当前位置: 首页 > news >正文

联邦学习+梯度+梯度剪枝

联邦学习需要参与者在每一次的本地训练后,上传所更新的模型参数并与其他参与者共享,而参数更新中仍有可能包含所有者的敏感信息

解决方案:

加密方法(安全多方计算、同态加密)通过将明文编码为密文的方式,只允许特定人员解码,为数据隐私保护提供了有效手段,但这往往需要极大的计算开销,较难应用于实际的联邦学习场景中

数据扰动(差分隐私)通过将明文编码为密文的方式,只允许特定人员解码,为数据隐私保护提供了有效手段,但这往往需要极大的计算开销,较难应用于实际的联邦学习场景中

如果选择梯度剪枝的话是需要考虑选择哪一部分剪枝的梯度参与训练

(将梯度剪枝与加密的防御体系结合)

差分隐私与联邦学习 梯度剪枝

一般与轻量级进行结合吗?

基于梯度选择的轻量化差分隐私保护联邦学习

基于 Fisher 信息矩阵的 Dropout 机制,FisherDropout(差分隐私在什么地方使用呢?)

用差分隐私去解决——>轻量化、易部署

梯度剪枝方法:Federated DropoutFedDropout

采用完全客观的准确度与损失函数值作为评估标准(这个评估标准是怎么制定的呢?是否有理论依据?)
基于 Fisher 信息排序的 dropout 算法,通过优化选择梯度的一部分上传;由于 dropout 机制有利于减少梯度维度,应用于差分隐私保护方法中可以大大节约隐私预算
在差分隐私中,隐私预算\varepsilon是平衡安全性与可用性的关键参数 。决 定了差分隐私方法所添加噪声方差的大小。较小的值会使安全性变高,但也会令数据的可用性变得更差。
(差分隐私中主要的问题还是怎么处理隐私预算的值)
而在联邦学习中,用户通常需要在本地完成迭代以及噪声添加工作,这可能导致数据安全性与可用性的平衡更加困难。
当取值为 8 时,基于差分隐私保护的联邦学习在训练中可能需要额外使用 100 倍左右的数据量,才可达到与不含差分隐私的联邦学习一致的模型准确率。而在集中式学习中,这往往只需要付出大约 10 倍的训练量。

轻量化联邦学习的方式:剪枝、量化、蒸馏

满足差分隐私的联邦学习:与经典的联邦学习不同的地方为增加了客户端随机扰动参数

梯度剪枝:
客户端首先采用FisherDropout 算法,以神经元为单位对全局模型进行裁剪保留其中的一部分作为子模型。该裁剪过程一般被称为“dropout”。值得注意的是,每个客户端都需要根据自己的数据分布、通信状况与计算能力来独立地确定各自的裁剪方式与dropout 率,这将导致每个客户端最终所生成的子模型可能是异构的。

使用差分隐私进行数据扰动:

采用了差分隐私保护方法对待上传的数据进行扰动。被扰动后的数据将带有随机性,使得服务器很难根据这些参数反推客户端的原始数据。

由于每个客户端所上传的子模型是异构的,这也要求客户端在上传模型时还需要额外发送每个参数的位置信息。
服务器可以根据每位用户上一轮的位置信息发送新的子模型参数,而不用发送全局模型;或者考虑到收敛速度,可以每隔固定的迭代轮次便发送一次全局模型,以便让每个客户端确定新的子模型的位置。
一般是讲述梯度剪枝的原理与进行隐私性证明

相关文章:

联邦学习+梯度+梯度剪枝

联邦学习需要参与者在每一次的本地训练后,上传所更新的模型参数并与其他参与者共享,而参数更新中仍有可能包含所有者的敏感信息 解决方案: 加密方法(安全多方计算、同态加密)通过将明文编码为密文的方式,…...

提高研发效率还得看Apipost

随着数字化转型的加速,API(应用程序接口)已经成为企业间沟通和数据交换的关键。而在API开发和管理过程中,API文档、调试、Mock和测试的协作显得尤为重要。Apipost正是这样一款一体化协作平台,旨在解决这些问题&#xf…...

Elasticsearch使用——结合MybatisPlus使用ES es和MySQL数据一致性 结合RabbitMQ实现解耦

前言 本篇博客是一篇elasticsearch的使用案例,包括结合MybatisPlus使用ES,如何保证MySQL和es的数据一致性,另外使用了RabbitMQ进行解耦,自定义了发消息的方法。 其他相关的Elasticsearch的文章列表如下: Elasticsear…...

什么是CSGO大行动,2023年CSGO大行动时间预测

什么是CSGO大行动,2023年CSGO大行动时间预测 什么是CSGO大行动,2023年CSGO大行动时间预测 那天群里在提大行动,不明所以的新同学在问,什么是大行动,是不是官方红锁大行动要来了?当然不是,别自己…...

Pycharm中终端不显示虚拟环境名解决方法

文章目录 一、问题说明:二、解决方法:三、重启Pycharm 一、问题说明: Pycharm中打开项目配置完需要的虚拟环境后,在Terminal(终端)中无法切换及显示当前需要运行代码的虚拟环境。 比如以下一种情况&#…...

某翻译网站webpack 全扣js逆向法

持续创作文章,只是为了更好的思考 如下内容,如果有写的不清楚,不对的地方,也请大家提醒我一下,谢谢! 本次的目标是某道翻译网站,相信各位爷应该明白,这次逆向的整体做法还是把webpac…...

【C++】C++11 ——— 可变参数模板

​ ​📝个人主页:Sherry的成长之路 🏠学习社区:Sherry的成长之路(个人社区) 📖专栏链接:C学习 🎯长路漫漫浩浩,万事皆有期待 上一篇博客:【C】STL…...

ros2 UR10仿真包运行

前言 一个月前安装了一下这个包,但是有报错。现在换了一个强劲的电脑,内存64G ,显存39G ,终于跑起来了,没有报错。网页控制器可以控制RVIZ中的机器人旋转。 vituralBOX中3D加速要勾选,这样才能发挥独立显…...

flutter开发实战-安卓apk安装、卸载、启动实现

flutter开发实战-安卓apk安装、卸载、启动实现 在之前的文章中,实现了应用更新apk下载等操作,具体文档看下 这里记录一下使用shell来操作apk的安装、卸载、启动的操作。用到了库shell,Shell用于在Dart中或在代表其他用户执行系统管理任务的…...

AI绘画使用Stable Diffusion(SDXL)绘制玉雕风格的龙

一、引言 灵感来源于在逛 LibLib 时,看到的 Lib 原创者「熊叁gaikan」发布的「翠玉白菜 sdxl|玉雕风格」 的 Lora 模型。简直太好看了,一下子就被吸引了! 科普下「翠玉白菜」: 翠玉白菜是由翠玉所琢碾出白菜形状的清…...

上位机在自动化中有何作用和优势?

今日话题 上位机在自动化中有何作用和优势? 自动化控制编程领域包括单片机、PLC、机器视觉和运动控制等方向。输入“777”,即刻获取关于上位机开发和数据可视化的专业学习资料,近年来,上位机编程逐渐兴起,正在逐步替…...

centos7 部署oracle完整教程(命令行)

centos7 部署oracle完整教程(命令行) 一. centos7安装oracle1.查看Swap分区空间(不能小于2G)2.修改CentOS系统标识 (由于Oracle默认不支持CentOS)2.1.删除CentOS Linux release 7.9.2009 (Core)(快捷键dd)&…...

数据库常用的几大范式NF

1NF 列不可再分 数据表中每个列都是不可再分的数据项。 例子:数据表中有一个属性名为“价格”的属性列。假如进一步将价格属性列划分为“会员价”和“普通价”就违反了列不可再分的原则。也就不再满足1NF 2NF “取消了非主属性对主键的部分函数依赖” 或者说 所有…...

诈骗分子投递“大闸蟹礼品卡”,快递公司如何使用技术手段提前安全预警?

目录 快递公司能不能提前识别? 如何通过技术有效识别 为即将带来的双十一提供安全预警 金秋十月,正是品尝螃蟹的季节。中秋国庆长假也免不了走亲访友,大闸蟹更是成了热门礼品。10月7日,演员孙艺洲发布微博称,“收到…...

基于晶体结构优化的BP神经网络(分类应用) - 附代码

基于晶体结构优化的BP神经网络(分类应用) - 附代码 文章目录 基于晶体结构优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.晶体结构优化BP神经网络3.1 BP神经网络参数设置3.2 晶体结构算法应用 4.测试结果…...

模型的选择与调优(网格搜索与交叉验证)

1、为什么需要交叉验证 交叉验证目的:为了让被评估的模型更加准确可信 2、什么是交叉验证(cross validation) 交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过…...

2023-10-17 mysql-配置主从-记录

摘要: 2023-10-17 mysql-配置主从-记录 参考: mysql配置主从_mysql主从配置_Tyler唐的博客-CSDN博客 master: 环境: 192.168.74.128mysql8/etc/my.cnf.d/mysql-server.cnf # # This group are read by MySQL server. # Use it for options that only the server (but not cli…...

正向代理与反向代理

正向代理 客户端想要直接与目标服务器连接,但是无法直接进行连接,就需要先去访问中间的代理服务器,让代理服务器代替客户端去访问目标服务器 反向代理 屏蔽掉服务器的信息,经常用在多台服务器的分布式部署上,像一些大型…...

idea热加载,JRebel 插件是目前最好用的热加载插件,它支持 IDEA Ultimate 旗舰版、Community 社区版

1.如何安装 ① 点击 https://plugins.jetbrains.com/plugin/4441-jrebel-and-xrebel/versions 地址,下载 2022.4.1 版本。如下图所示: ② 打开 [Preference -> Plugins] 菜单,点击「Install Plugin from Disk…」按钮,选择刚下…...

0基础学习PyFlink——Map和Reduce函数处理单词统计

在很多讲解大数据的案例中,往往都会以一个单词统计例子来抛砖引玉。本文也不免俗,例子来源于PyFlink的《Table API Tutorial》,我们会通过几种方式统计不同的单词出现的个数,从而达到循序渐进的学习效果。 常规方法 # input.py …...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...