当前位置: 首页 > news >正文

基于晶体结构优化的BP神经网络(分类应用) - 附代码

基于晶体结构优化的BP神经网络(分类应用) - 附代码

文章目录

  • 基于晶体结构优化的BP神经网络(分类应用) - 附代码
    • 1.鸢尾花iris数据介绍
    • 2.数据集整理
    • 3.晶体结构优化BP神经网络
      • 3.1 BP神经网络参数设置
      • 3.2 晶体结构算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用晶体结构算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。

1.鸢尾花iris数据介绍

本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:

特征1特征2特征3类别
单组iris数据5.32.11.21

3种类别用1,2,3表示。

2.数据集整理

iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:

训练集(组)测试集(组)总数据(组)
10545150

类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。

当进行数据训练对所有输入特征数据均进行归一化处理。

3.晶体结构优化BP神经网络

3.1 BP神经网络参数设置

通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络结构

图1.神经网络结构

神经网络参数如下:

%创建神经网络
inputnum = 4;     %inputnum  输入层节点数 4维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 3;     %outputnum  隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;

3.2 晶体结构算法应用

晶体结构算法原理请参考:https://blog.csdn.net/u011835903/article/details/122851304

晶体结构算法的参数设置为:

popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;

第二层权值数量为:3;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从晶体结构算法的收敛曲线可以看到,整体误差是不断下降的,说明晶体结构算法起到了优化的作用:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

相关文章:

基于晶体结构优化的BP神经网络(分类应用) - 附代码

基于晶体结构优化的BP神经网络(分类应用) - 附代码 文章目录 基于晶体结构优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.晶体结构优化BP神经网络3.1 BP神经网络参数设置3.2 晶体结构算法应用 4.测试结果…...

模型的选择与调优(网格搜索与交叉验证)

1、为什么需要交叉验证 交叉验证目的:为了让被评估的模型更加准确可信 2、什么是交叉验证(cross validation) 交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过…...

2023-10-17 mysql-配置主从-记录

摘要: 2023-10-17 mysql-配置主从-记录 参考: mysql配置主从_mysql主从配置_Tyler唐的博客-CSDN博客 master: 环境: 192.168.74.128mysql8/etc/my.cnf.d/mysql-server.cnf # # This group are read by MySQL server. # Use it for options that only the server (but not cli…...

正向代理与反向代理

正向代理 客户端想要直接与目标服务器连接,但是无法直接进行连接,就需要先去访问中间的代理服务器,让代理服务器代替客户端去访问目标服务器 反向代理 屏蔽掉服务器的信息,经常用在多台服务器的分布式部署上,像一些大型…...

idea热加载,JRebel 插件是目前最好用的热加载插件,它支持 IDEA Ultimate 旗舰版、Community 社区版

1.如何安装 ① 点击 https://plugins.jetbrains.com/plugin/4441-jrebel-and-xrebel/versions 地址,下载 2022.4.1 版本。如下图所示: ② 打开 [Preference -> Plugins] 菜单,点击「Install Plugin from Disk…」按钮,选择刚下…...

0基础学习PyFlink——Map和Reduce函数处理单词统计

在很多讲解大数据的案例中,往往都会以一个单词统计例子来抛砖引玉。本文也不免俗,例子来源于PyFlink的《Table API Tutorial》,我们会通过几种方式统计不同的单词出现的个数,从而达到循序渐进的学习效果。 常规方法 # input.py …...

在 Ubuntu 22.04安装配置 Ansible

一、按官网指引安装 我使用的ubuntu22.04版本,使用apt安装。官网指引如下: $ sudo apt-get install software-properties-common $ sudo apt-add-repository ppa:ansible/ansible $ sudo apt-get update $ sudo apt-get install ansible 由于内部网络…...

【大数据 - Doris 实践】数据表的基本使用(三):数据模型

数据表的基本使用(三):数据模型 1.Aggregate 模型1.1 例一:导入数据聚合1.2 例二:保留明细数据1.3 例三:导入数据与已有数据聚合 2.Uniq 模型3.Duplicate 模型4.数据模型的选择建议5.聚合模型的局限性 Dori…...

PMP和CSPM证书,怎么选?

最近有宝子们在问,从事项目管理行业到底建议考什么证书?是不是CSPM证书一出来,PMP证书就没用了?其实不是。今天胖圆给大家解释一下二者都适合什么人群考~ PMP证书是什么? PMP项目管理专业人士资格认证,由…...

企业宣传为何要重视领军人物包装?领军人物对企业营销的价值和作用分析

在企业的完整形象中,产品、品牌、高管是最重要的组成部分。而大部分企业会把品牌形象放在首位,将公司所有的推广资源都倾斜在这一块,但其实,企业高管形象的塑造和传播也非常重要。小马识途建议中小企业在成长过程中提早对高管形象…...

什么是内存泄漏?JavaScript 垃圾回收机制原理及方式有哪些?哪些操作会造成内存泄漏?

1、什么是内存泄漏? 内存泄漏是前端开发中的一个常见问题,可能导致项目变得缓慢、不稳定甚至崩溃。内存泄漏是指不再用到的内存没有及时被释放,从而造成内存上的浪费。 2、 JavaScript 垃圾回收机制 1) 原理: JavaS…...

C++项目实战——基于多设计模式下的同步异步日志系统-⑫-日志宏全局接口设计(代理模式)

文章目录 专栏导读日志宏&全局接口设计全局接口测试项目目录结构整理示例代码拓展示例代码 专栏导读 🌸作者简介:花想云 ,在读本科生一枚,C/C领域新星创作者,新星计划导师,阿里云专家博主,C…...

京东数据接口:京东数据分析怎么做?

电商运营中数据分析的重要性不言而喻,而想要做数据分析,就要先找到数据,利用数据接口我们能够更轻松的获得比较全面的数据。因此,目前不少品牌商家都选择使用一些数据接口来获取相关电商数据、以更好地做好数据分析。 鲸参谋电商…...

使用Git在本地创建一个仓库并将其推送到GitHub

前记: git svn sourcetree gitee github gitlab gitblit gitbucket gitolite gogs 版本控制 | 仓库管理 ---- 系列工程笔记. Platform:Windows 10 Git version:git version 2.32.0.windows.1 Function: 使用Git在本地创建一个…...

5.覆盖增强技术——PUCCHPUSCH

PUSCH增强方案的标准化工作 1.PUSCH重复传输类型A增强,包括两种增强机制:增加最大重复传输次数,以及基于可用上行时隙的重复传输次数技术方式。 2.基于频域的解决方案,包括时隙间/时隙内跳频的增强 3.支持跨多个时隙的传输块&…...

徐建鸿:深耕中医康养的“托钵行者”

为什么是“庄人堂”?杭州“庄人堂”医药科技公司董事长徐建鸿很乐意和别人分享这个名称的由来,一方面是庄子首先提出“养生”这个概念,接近上工治未病的上医,取名“庄人堂”代表庄子门生,向古哲先贤致敬!另…...

基于svg+js实现简单动态时钟

实现思路 创建SVG容器&#xff1a;首先&#xff0c;创建一个SVG容器元素&#xff0c;用于容纳时钟的各个部分。指定SVG的宽度、高度以及命名空间。 <svg width"200" height"200" xmlns"http://www.w3.org/2000/svg"><!-- 在此添加时钟…...

端到端测试(End-to-end tests)重试策略

作者&#xff5c;Giuseppe Donati&#xff0c;Trivago公司Web测试自动化工程师 整理&#xff5c;TesterHome 失败后重试&#xff0c;是好是坏&#xff1f; 为什么要在失败时重试所有测试&#xff1f;为什么不&#xff1f; 作为Trivago&#xff08;德国酒店搜索服务平台&…...

三相交错LLC软启动控制驱动波形分析--死区时间与占空比关系

三相交错LLC软启动控制驱动波形分析 文章目录 三相交错LLC软启动控制驱动波形分析一、电路原理二、时序分析三、环路分析四、控制策略1.软启动驱动波形趋势2.软启动驱动波形占空图3.软启动驱动波形详细图4.软启动代码分析5.Debug调试界面5.死区时间与实际输出5.1 死区时间50--对…...

数据结构详细笔记——栈与队列

文章目录 栈的三要素逻辑结构&#xff08;定义&#xff09;数据的运算&#xff08;基本操作&#xff09;存储结构&#xff08;物理结构&#xff09;顺序栈&#xff08;顺序存储&#xff09;链栈&#xff08;链式存储&#xff09; 队列的三要素逻辑结构&#xff08;定义&#xf…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...