基于晶体结构优化的BP神经网络(分类应用) - 附代码
基于晶体结构优化的BP神经网络(分类应用) - 附代码
文章目录
- 基于晶体结构优化的BP神经网络(分类应用) - 附代码
- 1.鸢尾花iris数据介绍
- 2.数据集整理
- 3.晶体结构优化BP神经网络
- 3.1 BP神经网络参数设置
- 3.2 晶体结构算法应用
- 4.测试结果:
- 5.Matlab代码
摘要:本文主要介绍如何用晶体结构算法优化BP神经网络,利用鸢尾花数据,做一个简单的讲解。
1.鸢尾花iris数据介绍
本案例利用matlab公用的iris鸢尾花数据,作为测试数据,iris数据是特征为4维,类别为3个类别。数据格式如下:
| 特征1 | 特征2 | 特征3 | 类别 | |
|---|---|---|---|---|
| 单组iris数据 | 5.3 | 2.1 | 1.2 | 1 |
3种类别用1,2,3表示。
2.数据集整理
iris数据总共包含150组数据,将其分为训练集105组,测试集45组。如下表所示:
| 训练集(组) | 测试集(组) | 总数据(组) |
|---|---|---|
| 105 | 45 | 150 |
类别数据处理:原始数据类别用1,2,3表示为了方便神经网络训练,类别1,2,3分别用1,0,0;0,1,0;0,0,1表示。
当进行数据训练对所有输入特征数据均进行归一化处理。
3.晶体结构优化BP神经网络
3.1 BP神经网络参数设置
通常而言,利用智能算法一般优化BP神经网络的初始权值和阈值来改善BP神经网络的性能。本案例基于iris数据,由于iris数据维度不高,采用简单的BP神经网络。神经网络参数如下:

神经网络参数如下:
%创建神经网络
inputnum = 4; %inputnum 输入层节点数 4维特征
hiddennum = 10; %hiddennum 隐含层节点数
outputnum = 3; %outputnum 隐含层节点数
net = newff( minmax(input) , [hiddennum outputnum] , { 'logsig' 'purelin' } , 'traingdx' ) ;
%设置训练参数
net.trainparam.show = 50 ;
net.trainparam.epochs = 200 ;
net.trainparam.goal = 0.01 ;
net.trainParam.lr = 0.01 ;
3.2 晶体结构算法应用
晶体结构算法原理请参考:https://blog.csdn.net/u011835903/article/details/122851304
晶体结构算法的参数设置为:
popsize = 10;%种群数量Max_iteration = 15;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
% inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
% hiddennum + outputnum 为权值的个数
dim = inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;% inputnum * hiddennum + hiddennum*outputnum维度
这里需要注意的是,神经网络的阈值数量计算方式如下:
本网络有2层:
第一层的阈值数量为:4*10 = 40; 即inputnum * hiddennum;
第一层的权值数量为:10;即hiddennum;
第二层的阈值数量为:3*10 = 30;即hiddenum * outputnum;
第二层权值数量为:3;即outputnum;
于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 83;
适应度函数值设定:
本文设置适应度函数如下:
f i t n e s s = a r g m i n ( T r a i n D a t a E r r o r R a t e + T e s t D a t a E r r o r R a t e ) fitness = argmin(TrainDataErrorRate + TestDataErrorRate) fitness=argmin(TrainDataErrorRate+TestDataErrorRate)
其中TrainDataErrorRate,TestDataErrorRate分别为训练集和测试集的错误分类率。适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。
4.测试结果:
从晶体结构算法的收敛曲线可以看到,整体误差是不断下降的,说明晶体结构算法起到了优化的作用:



5.Matlab代码
相关文章:
基于晶体结构优化的BP神经网络(分类应用) - 附代码
基于晶体结构优化的BP神经网络(分类应用) - 附代码 文章目录 基于晶体结构优化的BP神经网络(分类应用) - 附代码1.鸢尾花iris数据介绍2.数据集整理3.晶体结构优化BP神经网络3.1 BP神经网络参数设置3.2 晶体结构算法应用 4.测试结果…...
模型的选择与调优(网格搜索与交叉验证)
1、为什么需要交叉验证 交叉验证目的:为了让被评估的模型更加准确可信 2、什么是交叉验证(cross validation) 交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中一份作为验证集。然后经过…...
2023-10-17 mysql-配置主从-记录
摘要: 2023-10-17 mysql-配置主从-记录 参考: mysql配置主从_mysql主从配置_Tyler唐的博客-CSDN博客 master: 环境: 192.168.74.128mysql8/etc/my.cnf.d/mysql-server.cnf # # This group are read by MySQL server. # Use it for options that only the server (but not cli…...
正向代理与反向代理
正向代理 客户端想要直接与目标服务器连接,但是无法直接进行连接,就需要先去访问中间的代理服务器,让代理服务器代替客户端去访问目标服务器 反向代理 屏蔽掉服务器的信息,经常用在多台服务器的分布式部署上,像一些大型…...
idea热加载,JRebel 插件是目前最好用的热加载插件,它支持 IDEA Ultimate 旗舰版、Community 社区版
1.如何安装 ① 点击 https://plugins.jetbrains.com/plugin/4441-jrebel-and-xrebel/versions 地址,下载 2022.4.1 版本。如下图所示: ② 打开 [Preference -> Plugins] 菜单,点击「Install Plugin from Disk…」按钮,选择刚下…...
0基础学习PyFlink——Map和Reduce函数处理单词统计
在很多讲解大数据的案例中,往往都会以一个单词统计例子来抛砖引玉。本文也不免俗,例子来源于PyFlink的《Table API Tutorial》,我们会通过几种方式统计不同的单词出现的个数,从而达到循序渐进的学习效果。 常规方法 # input.py …...
在 Ubuntu 22.04安装配置 Ansible
一、按官网指引安装 我使用的ubuntu22.04版本,使用apt安装。官网指引如下: $ sudo apt-get install software-properties-common $ sudo apt-add-repository ppa:ansible/ansible $ sudo apt-get update $ sudo apt-get install ansible 由于内部网络…...
【大数据 - Doris 实践】数据表的基本使用(三):数据模型
数据表的基本使用(三):数据模型 1.Aggregate 模型1.1 例一:导入数据聚合1.2 例二:保留明细数据1.3 例三:导入数据与已有数据聚合 2.Uniq 模型3.Duplicate 模型4.数据模型的选择建议5.聚合模型的局限性 Dori…...
PMP和CSPM证书,怎么选?
最近有宝子们在问,从事项目管理行业到底建议考什么证书?是不是CSPM证书一出来,PMP证书就没用了?其实不是。今天胖圆给大家解释一下二者都适合什么人群考~ PMP证书是什么? PMP项目管理专业人士资格认证,由…...
企业宣传为何要重视领军人物包装?领军人物对企业营销的价值和作用分析
在企业的完整形象中,产品、品牌、高管是最重要的组成部分。而大部分企业会把品牌形象放在首位,将公司所有的推广资源都倾斜在这一块,但其实,企业高管形象的塑造和传播也非常重要。小马识途建议中小企业在成长过程中提早对高管形象…...
什么是内存泄漏?JavaScript 垃圾回收机制原理及方式有哪些?哪些操作会造成内存泄漏?
1、什么是内存泄漏? 内存泄漏是前端开发中的一个常见问题,可能导致项目变得缓慢、不稳定甚至崩溃。内存泄漏是指不再用到的内存没有及时被释放,从而造成内存上的浪费。 2、 JavaScript 垃圾回收机制 1) 原理: JavaS…...
C++项目实战——基于多设计模式下的同步异步日志系统-⑫-日志宏全局接口设计(代理模式)
文章目录 专栏导读日志宏&全局接口设计全局接口测试项目目录结构整理示例代码拓展示例代码 专栏导读 🌸作者简介:花想云 ,在读本科生一枚,C/C领域新星创作者,新星计划导师,阿里云专家博主,C…...
京东数据接口:京东数据分析怎么做?
电商运营中数据分析的重要性不言而喻,而想要做数据分析,就要先找到数据,利用数据接口我们能够更轻松的获得比较全面的数据。因此,目前不少品牌商家都选择使用一些数据接口来获取相关电商数据、以更好地做好数据分析。 鲸参谋电商…...
使用Git在本地创建一个仓库并将其推送到GitHub
前记: git svn sourcetree gitee github gitlab gitblit gitbucket gitolite gogs 版本控制 | 仓库管理 ---- 系列工程笔记. Platform:Windows 10 Git version:git version 2.32.0.windows.1 Function: 使用Git在本地创建一个…...
5.覆盖增强技术——PUCCHPUSCH
PUSCH增强方案的标准化工作 1.PUSCH重复传输类型A增强,包括两种增强机制:增加最大重复传输次数,以及基于可用上行时隙的重复传输次数技术方式。 2.基于频域的解决方案,包括时隙间/时隙内跳频的增强 3.支持跨多个时隙的传输块&…...
徐建鸿:深耕中医康养的“托钵行者”
为什么是“庄人堂”?杭州“庄人堂”医药科技公司董事长徐建鸿很乐意和别人分享这个名称的由来,一方面是庄子首先提出“养生”这个概念,接近上工治未病的上医,取名“庄人堂”代表庄子门生,向古哲先贤致敬!另…...
基于svg+js实现简单动态时钟
实现思路 创建SVG容器:首先,创建一个SVG容器元素,用于容纳时钟的各个部分。指定SVG的宽度、高度以及命名空间。 <svg width"200" height"200" xmlns"http://www.w3.org/2000/svg"><!-- 在此添加时钟…...
端到端测试(End-to-end tests)重试策略
作者|Giuseppe Donati,Trivago公司Web测试自动化工程师 整理|TesterHome 失败后重试,是好是坏? 为什么要在失败时重试所有测试?为什么不? 作为Trivago(德国酒店搜索服务平台&…...
三相交错LLC软启动控制驱动波形分析--死区时间与占空比关系
三相交错LLC软启动控制驱动波形分析 文章目录 三相交错LLC软启动控制驱动波形分析一、电路原理二、时序分析三、环路分析四、控制策略1.软启动驱动波形趋势2.软启动驱动波形占空图3.软启动驱动波形详细图4.软启动代码分析5.Debug调试界面5.死区时间与实际输出5.1 死区时间50--对…...
数据结构详细笔记——栈与队列
文章目录 栈的三要素逻辑结构(定义)数据的运算(基本操作)存储结构(物理结构)顺序栈(顺序存储)链栈(链式存储) 队列的三要素逻辑结构(定义…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
