当前位置: 首页 > news >正文

三相交错LLC软启动控制驱动波形分析--死区时间与占空比关系

三相交错LLC软启动控制驱动波形分析

文章目录

  • 三相交错LLC软启动控制驱动波形分析
  • 一、电路原理
  • 二、时序分析
  • 三、环路分析
  • 四、控制策略
      • 1.软启动驱动波形趋势
      • 2.软启动驱动波形占空图
      • 3.软启动驱动波形详细图
      • 4.软启动代码分析
      • 5.Debug调试界面
      • 5.死区时间与实际输出
        • 5.1 死区时间50--对应占空比 29.31%
        • 5.2 死区时间50--对应占空比26%
        • 5.3 死区周期值105--对应占空比33%
        • 5.4 死区周期90 --对应占空比36%
        • 5.5 死区时间60--对应占空比40.35%
  • 五、总结

在开关电源技术中,三相交错LLC拓扑DC-DC电源软启动驱动控制是一种先进的电源管理技术,具有高效、可靠、精确控制等优点。本文将深入分析三相交错LLC拓扑DC-DC电源软启动驱动控制过程的作用、电路原理、时序分析、环路分析、控制策略及总结。

一、电路原理

三相交错LLC拓扑DC-DC电源软启动驱动控制电路主要由三相交错并联的半桥变换器、驱动电路和保护电路组成。半桥变换器由两个开关管和相应的磁性元件组成,通过控制开关管的开通和关断实现直流电压的变换。驱动电路则负责生成三相交错的PWM驱动信号,以控制变换器中开关管的开通和关断。保护电路则对电源的输出电压、输出电流等参数进行监测,当出现过电压、过电流等情况时,及时关断开关管以保护变换器和负载的安全。

二、时序分析

在三相交错LLC拓扑DC-DC电源软启动驱动控制过程中,三相交错的PWM驱动信号按照特定的时序轮流导通和关断,实现电源系统的平滑启动。具体的时序过程可以通过使用逻辑电平和时间图等方式进行描述。在逻辑电平方面,三相交错的PWM驱动信号通常具有相同的逻辑高电平和逻辑低电平,但彼此之间具有一定的相位差。在时间图方面,可以通过绘制每个PWM驱动信号的时序图来直观地展示其时序关系。

三、环路分析

三相交错LLC拓扑DC-DC电源软启动驱动控制过程可以看作一个闭环控制系统。在该系统中,控制环路由电压采样环、电流采样环和PWM驱动环组成。电压采样环负责监测电源系统的输出电压,根据采样结果调整PWM驱动信号的占空比,以实现对输出电压的精确控制。电流采样环则负责监测电源系统的输出电流,以确保输出电流不超过安全范围。

四、控制策略

在三相交错LLC拓扑DC-DC电源软启动驱动控制过程中,控制策略是实现电源系统高效、可靠、精确控制的关键。下面我们以电压控制模式为例,简要介绍控制策略的实现过程:

电压采样:通过电压采样环对电源系统的输出电压进行采样,将采样结果与期望的电压值进行比较,得到误差信号。
误差放大:将误差信号放大后,送入PWM驱动环。
PWM驱动:PWM驱动环根据误差信号调整PWM驱动信号的占空比,从而改变开关管的导通时间和关断时间,进而调整电源系统的输出电压。
保护措施:当电源系统的输出电流超过安全范围时,电流采样环会发出信号,关断开关管以保护电源系统和负载的安全。

1.软启动驱动波形趋势

在这里插入图片描述

2.软启动驱动波形占空图

在这里插入图片描述

3.软启动驱动波形详细图

在这里插入图片描述

4.软启动代码分析

				SoftTime ++ ;if(SoftTime == 1 ){if(pwm_start_flag ==0 ){MX_TIM8_Init();MX_TIM1_Init();__HAL_TIM_SET_PRESCALER(&htim8, 3);__HAL_TIM_SET_PRESCALER(&htim1, 3);MX_PWM_Start();pwm_start_flag = 1;pwm_stop_flag = 0;}}else if(SoftTime == 2 ){if(pwm_stop_flag == 0){
//								MX_PWM_Stop();__HAL_TIM_SET_PRESCALER(&htim1, 24);__HAL_TIM_SET_PRESCALER(&htim8, 24);pwm_start_flag =  0;pwm_stop_flag = 1;}}else if(SoftTime == 8 ){MX_PWM_Stop();}else if(SoftTime == 40 ){SoftTime = 0;}

5.Debug调试界面

在这里插入图片描述

5.死区时间与实际输出

5.1 死区时间50–对应占空比 29.31%

在这里插入图片描述

5.2 死区时间50–对应占空比26%

在这里插入图片描述

5.3 死区周期值105–对应占空比33%

在这里插入图片描述

5.4 死区周期90 --对应占空比36%

在这里插入图片描述

5.5 死区时间60–对应占空比40.35%

在这里插入图片描述

五、总结

三相交错LLC拓扑DC-DC电源软启动驱动控制是一种先进的开关电源技术,具有高效、可靠、精确控制等优点。通过对电路原理、时序分析、环路分析和控制策略等方面的深入分析,我们可以更好地理解这一技术的实现过程和原理。在实际应用中,可以根据不同的电源系统和运行条件,对三相交错LLC拓扑DC-DC电源软启动驱动控制进行优化,以满足系统的性能要求并延长电源的使用寿命。

相关文章:

三相交错LLC软启动控制驱动波形分析--死区时间与占空比关系

三相交错LLC软启动控制驱动波形分析 文章目录 三相交错LLC软启动控制驱动波形分析一、电路原理二、时序分析三、环路分析四、控制策略1.软启动驱动波形趋势2.软启动驱动波形占空图3.软启动驱动波形详细图4.软启动代码分析5.Debug调试界面5.死区时间与实际输出5.1 死区时间50--对…...

数据结构详细笔记——栈与队列

文章目录 栈的三要素逻辑结构(定义)数据的运算(基本操作)存储结构(物理结构)顺序栈(顺序存储)链栈(链式存储) 队列的三要素逻辑结构(定义&#xf…...

JVM调试命令与调试工具

目录 一、JDK自带命令 1、jps 2、jstat(FullGC频繁解决方案) 3、jmap 4、jhat 5、jstack(cpu占用高解决方案) 6、jinfo 二、JDK的可视化工具JConsole 1、JConsole 2、VisualVM 一、JDK自带命令 Sun JDK监控和故障处理命令如: 1、jps JVM Proc…...

《软件方法》第1章2023版连载(07)UML的历史和现状

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 1.3 统一建模语言UML 1.3.1 UML的历史和现状 上一节阐述了A→B→C→D的推导是不可避免的,但具体如何推导,有各种不同的做法,这些做法可以称为“方…...

chromium 54 chrome 各个版本发布功能列表(109-119)

chromium Features 109-119 From https://chromestatus.com/features chromium109 Features:12 Auto range support for font descriptors inside font-face rule Auto range support for variable fonts in ‘font-weight’, ‘font-style’ and ‘font-stretch’ descrip…...

Linux实现原理 — I/O 处理流程与优化手段

Linux I/O 接口 Linux I/O 接口可以分为以下几种类型: 文件 I/O 接口:用于对文件进行读写操作的接口,包括 open()、read()、write()、close()、lseek() 等。 网络 I/O 接口:用于网络通信的接口,包括 socket()、conne…...

第 367 场 LeetCode 周赛题解

A 找出满足差值条件的下标 I 模拟 class Solution { public:vector<int> findIndices(vector<int> &nums, int indexDifference, int valueDifference) {int n nums.size();for (int i 0; i < n; i)for (int j 0; j < i; j)if (i - j > indexDiffe…...

最新百度统计配置图文教程,获取siteId、百度统计AccessToken、百度统计代码教程

一、前言 很多网友开发者都不知道百度统计siteId、百度统计token怎么获取&#xff0c;在网上找的教程都是几年前老的教程&#xff0c;因此给大家出一期详细百度统计siteId、百度统计token、百度统计代码获取详细步骤教程。 二、登录到百度统计 1.1 登录到百度统计官网 使用…...

【C++ 学习 ㉘】- 详解 C++11 的列表初始化

目录 一、C11 简介 二、列表初始化 2.1 - 统一初始化 2.2 - 列表初始化的使用细节 2.2.1 - 聚合类型的定义 2.2.2 - 注意事项 2.3 - initializer_list 2.3.1 - 基本使用 2.3.2 - 源码剖析 一、C11 简介 1998 年&#xff0c;C 标准委员会发布了第一版 C 标准&#xff0…...

OpenCV12-图像卷积

OpenCV12-图像卷积 图像卷积 图像卷积 OpenCV中提供了filt2D()函数用于实现图像和卷积模板之间的卷积运算&#xff1a; void filter2D(InputArray src, // 输入图像OutputArray dst, // 输出图像int ddepth, // 输出图像数据类型&#xff08;深度&#xff09;&#xff…...

MVCC与BufferPool缓存机制

MVCC多版本并发控制机制 Mysql在可重复读隔离级别下如何保证事务较高的隔离性&#xff0c;我们上节课给大家演示过&#xff0c;同样的sql查询语句在一个事务里多次执行查询结果相同&#xff0c;就算其它事务对数据有修改也不会影响当前事务sql语句的查询结果。 这个隔离性就是…...

POI、Easy Excel操作Excel

文章目录 1.常用的场景2.基本功能3.Excel在Java中是一个对象4. 简单的写&#xff08;07版本&#xff08;.xlsx&#xff09;Excel&#xff09;大文件写HSSF大文件写XSSF大文件写SXSSF 5. Excel读5.1 读取遇到类型转化问题该怎么解决5.2 遇到Excel公式怎么办 6. Easy Excel6.1简单…...

网络安全(黑客)自学方向

每年报考网络安全专业的人数很多&#xff0c;但不少同学听说千万别学网络安全&#xff0c;害怕网络安全专业很难就业。下面就带大家深入了解一下网络安全专业毕业后可以干什么&#xff0c;包括网络安全专业的就业前景和方向等。 随着信息化时代的到来&#xff0c;网络安全行业…...

react写一个简单的3d滚轮picker组件

1. TreeDPicker.tsx文件 原理就不想赘述了, 想了解的话, 网址在: 使用vue写一个picker插件,使用3d滚轮的原理_vue3中支持3d picker选择器插件-CSDN博客 import React, { useEffect, useRef, Ref, useState } from "react"; import Animate from "../utils/an…...

Compose竖向列表LazyColumn

基础列表一 LazyColumn组件中用items加载数据&#xff0c;rememberLazyListState()结合rememberCoroutineScope()实现返回顶部。 /*** 基础列表一*/ Composable fun Items() {Box(modifier Modifier.fillMaxSize()) {val context LocalContext.currentval dataList arrayLi…...

6.自定义相机控制器

愿你出走半生,归来仍是少年&#xff01; Cesium For Unity自带的Dynamic Camera,拥有优秀的动态展示效果&#xff0c;但是其对于场景的交互方式用起来不是很舒服。 通过模仿Cesium JS 的交互方式&#xff0c;实现在Unity中的交互&#xff1a; 通过鼠标左键拖拽实现场景平移通过…...

一文带你GO语言入门

什么是go语言? Go语言(又称Golang)是Google开发的一种静态强类型、编译型、并发型,并具有垃圾回收功能的编程语言。Go语言的主要特点包括:- 简洁和简单 - 语法简单明快,易于学习和使用 特点 高效 编译速度快,执行效率高 并发支持 原生支持并发,利用goroutine实现高效的并发…...

前后端小项目链接

1.vue的创建 vue的项目创建 1.1 vue create vue_name 1.2 Babel Router(路由) CSS Pre-processors 路由可通过&#xff1a;npm i vue-router3.5.2 -S 下载 1.3less 1.4 In dedicated config files 1.5 启动命令&#xff1a;npm run serve 端口号在vue.config。js中配置 devS…...

编辑器功能:用一个快捷键来【锁定】或【解开】Inspector面板

一、需求 我有一个脚本&#xff0c;上面暴露了许多参数&#xff0c;我要在场景中拖物体给它进行配置。 如果不锁定Inspector面板的话&#xff0c;每次点击物体后&#xff0c;Inspector的内容就是刚点击的物体的内容&#xff0c;而不是挂载脚本的参数面板。 二、 解决 &…...

Vue 网络处理 - axios 异步请求的使用,请求响应拦截器(最佳实践)

目录 一、axiox 1.1、axios 简介 1.2、axios 基本使用 1.2.1、下载核心 js 文件. 1.2.2、发送 GET 异步请求 1.2.3、发送 POST 异步请求 1.2.4、发送 GET、POST 请求最佳实践 1.3、请求响应拦截器 1.3.1、拦截器解释 1.3.2、请求拦截器的使用 1.3.3、响应拦截器的使…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...