当前位置: 首页 > news >正文

Linux实现原理 — I/O 处理流程与优化手段

Linux I/O 接口

Linux I/O 接口可以分为以下几种类型:

文件 I/O 接口:用于对文件进行读写操作的接口,包括 open()、read()、write()、close()、lseek() 等。

网络 I/O 接口:用于网络通信的接口,包括 socket()、connect()、bind()、listen()、accept() 等。

设备 I/O 接口:用于对设备(e.g. 字符设备、块设备)进行读写操作的接口,包括 ioctl()、mmap()、select()、poll()、epoll() 等。

其他 I/O 接口:如管道接口、共享内存接口、信号量接口等。

Linux I/O 处理流程

下面以最常用的 read() 和 write() 函数来介绍 Linux 的 I/O 处理流程。

read() 和 write()

read() 和 write() 函数,是最基本的文件 I/O 接口,也可用于在 TCP Socket 中进行数据读写,属于阻塞式 I/O(Blocking I/O),即:如果没有可读数据或者对端的接收缓冲区已满,则函数将一直等待直到有数据可读或者对端缓冲区可写。

函数原型:

fd 参数:指示 fd 文件描述符。

buf 参数:指示 read/write 缓冲区的入口地址。

count 参数:指示 read/write 数据的大小,单位为 Byte。

函数返回值:

  • 返回实际 read/write 的字节数。

  • 返回 0,表示已到达文件末尾。

  • 返回 -1,表示操作失败,可以通过 errno 全局变量来获取具体的错误码。

#include <unistd.h>ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);

处理流程

下面以同时涉及了 Storage I/O 和 Network I/O 的一次网络文件下载操作来展开 read() 和 write() 的处理流程。

read() 的处理流程:

  1. Application 调用 read(),CPU 模式从用户态切换到内核态。

  2. Kernel 根据 file fd 查表(进程文件符表),找到对应的 file 结构体(普通文件),从而找到此文件的 inode 编号。

  3. Kernel 将 buf 和 count 参数、以及文件指针位置等信息传递给 Device Driver(磁盘驱动程序)。

  4. Driver 将请求的数据从 Disk Device 中 DMA Copy 到 Kernel PageCache Buffer 中。

  5. Kernel 将数据从 Kernel PageCache Buffer 中 CPU Copy 到 Userspace Buffer 中(Application 不能直接访问 Kernel space)。

  6. read() 最终返回读取的字节数或错误代码给 Application,CPU 模式从内核态切换到用户态。

write() 的处理流程:

  1. Application 调用 write(),CPU 模式从用户态切换到内核态。

  2. Kernel 根据 socket fd 查表,找到对应的 file 结构体(套接字文件),从而找到该 Socket 的 sock 结构体。

  3. Kernel 将 buf 和 count 参数、以及文件指针位置等信息传递给 Device Driver(网卡驱动程序)。

  4. Driver 将请求的数据从 Userspace Buffer 中 CPU Copy 到 Kernel Socket Buffer 中。

  5. Kernel 将数据从 Kernel Socket Buffer 中 DMA Copy 到 NIC Device。

  6. write() 最终返回写入的字节数或错误代码给 Application,CPU 模式从内核态切换到用户态。

可见,在一次常规的 I/O(read/write)操作流程中 处理流程中,总共需要涉及到:

  • 4 次 CPU 模式切换:当 Application 调用 SCI 时,CPU 从用户态切换到内核态;当 SCI 返回时,CPU 从内核态切换回用户态。

  • 2 次 CPU Copy:CPU 执行进程数据拷贝指令,将数据从 User Process 虚拟地址空间 Copy 到 Kernel 虚拟地址空间。

  • 2 次 DMA Copy:CPU 向 DMA 控制器下达设备数据拷贝指令,将数据从 DMA 物理内存空间 Copy 到 Kernel 虚拟地址空间。

相关视频推荐

90分钟搞定底层网络IO模型,linux开发必须要懂得10种模型

手写用户态协议栈以及零拷贝的实现

epoll的原理与使用,epoll比select/poll强在哪里?

免费学习地址:c/c++ linux服务器开发/后台架构师

需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

I/O 性能优化机制

I/O buff/cache

Linux Kernel 为了提高 I/O 性能,划分了一部分物理内存空间作为 I/O buff/cache,也就是内核缓冲区。当 Kernel 接收到 read() / write() 等读写请求时,首先会到 buff/cache 查找,如果找到,则立即返回。如果没有则通过驱动程序访问 I/O 外设。

查看 Linux 的 buff/cache:

$ free -mhtotal        used        free      shared  buff/cache   available
Mem:           7.6G        4.2G        2.9G         10M        547M        3.1G
Swap:          4.0G          0B        4.0G

实际上,Cache(缓存)和 Buffer(缓冲)从严格意义上讲是 2 个不同的概念,Cache 侧重加速 “读”,而 Buffer 侧重缓冲 “写”。但在很多场景中,由于读写总是成对存在的,所以并没有严格区分两者,而是使用 buff/cache 来统一描述。

Page Cache

Page Cache(页缓存)是最常用的 I/O Cache 技术,以页为单位的,内容就是磁盘上的物理块,用于减少 Application 对 Storage 的 I/O 操作,能够令 Application 对文件进行顺序读写的速度接近于对内存的读写速度。

页缓存读策略:当 Application 发起一个 Read() 操作,Kernel 首先会检查需要的数据是否在 Page Cache 中:

  • 如果在,则直接从 Page Cache 中读取。

  • 如果不在,则按照原 I/O 路径从磁盘中读取。同时,还会根据局部性原理,进行文件预读,即:将已读数据随后的少数几个页面(通常是三个)一同缓存到 Page Cache 中。

页缓存写策略:当 Application 发起一个 write() 操作,Kernel 首先会将数据写到 Page Cache,然后方法返回,即:Write back(写回)机制,区别于 Write Through(写穿)。此时数据还没有真正的写入到文件中去,Kernel 仅仅将已写入到 Page Cache 的这一个页面标记为 “脏页(Dirty Page)”,并加入到脏页链表中。然后,由 flusher(pdflush,Page Dirty Flush)kernel thread(回写内核线程)周期性地将脏页链表中的页写到磁盘,并清理 “脏页” 标识。在以下 3 种情况下,脏页会被写回磁盘:

  1. 当空闲内存低于一个特定的阈值时,内核必须将脏页写回磁盘,以便释放内存。

  2. 当脏页在内存中驻留时间超过一个特定的阈值时,内核必须将超时的脏页写回磁盘。

  3. 当 Application 主动调用 sync、fsync、fdatasync 等 SCI 时,内核会执行相应的写回操作。

flusher 刷新策略由以下几个内核参数决定(数值单位均为 1/100 秒):

# flush 每隔 5 秒执行一次
$ sysctl vm.dirty_writeback_centisecs
vm.dirty_writeback_centisecs = 500# 内存中驻留 30 秒以上的脏数据将由 flush 在下一次执行时写入磁盘
$ sysctl vm.dirty_expire_centisecs
vm.dirty_expire_centisecs = 3000# 若脏页占总物理内存 10% 以上,则触发 flush 把脏数据写回磁盘
$ sysctl vm.dirty_background_ratio
vm.dirty_background_ratio = 10

综上可见,Page Cache 技术在理想的情况下,可以在一次 Storage I/O 的流程中,减少 2 次 DMA Copy 操作(不直接访问磁盘)。

Buffered I/O

下图展示了一个 C 程序通过 stdio 库中的 printf() 或 fputc() 等输出函数来执行数据写入的操作处理流程。过程中涉及到了多处 I/O Buffer 的实现:

  1. stdio buffer:在 Userspace 实现的 Buffer,因为 SCI 的成本昂贵,所以,Userspace Buffer 用于 “积累“ 到更多的待写入数据,然后再通过一次 SCI 来完成真正的写入。另外,stdio 也支持 fflush() 强制刷新函数。

  2. Kernel buffer cache:处理包括上文以及提到的 Page Cache 技术之外,磁盘设备驱动程序也提供块级别的 Buffer 技术,用于 “积累“ 更多的文件系统元数据和磁盘块数据,然后在合适的时机完成真正的写入。

零拷贝技术(Zero-Copy)

零拷贝技术(Zero-Copy),是通过尽量避免在 I/O 处理流程中使用 CPU Copy 和 DMA Copy 的技术。实际上,零拷贝并非真正做到了没有任何拷贝动作,它更多是一种优化的思想。

下列表格从 CPU Copy 次数、DMA Copy 次数以及 SCI 次数这 3 个方面来对比了几种常见的零拷贝技术。可以看见,2 次 DMA Copy 是不可避免的,因为 DMA 是外设 I/O 的基本行为。零拷贝技术主要从减少 CPU Copy 和 CPU 模式切换这 2 个方面展开。

1、Userspace Direct I/O

Userspace Direct I/O(用户态直接 I/O)技术的底层原理由 Kernel space 中的 ZONE_DMA 支持。ZONE_DMA 是一块 Kernel 和 User Process 都可以直接访问的 I/O 外设 DMA 物理内存空间。基于此, Application 可以直接读写 I/O 外设,而 Kernel 只会辅助执行必要的虚拟存储配置工作,不直接参与数据传输。因此,该技术可以减少 2 次 CPU Copy。

Userspace Direct I/O 的缺点:

  1. 由于旁路了 要求 Kernel buffer cache 优化,就需要 Application 自身实现 Buffer Cache 机制,称为自缓存应用程序,例如:数据库管理系统。

  2. 由于 Application 直接访问 I/O 外设,会导致 CPU 阻塞,浪费 CPU 资源,这个问题需要结合异步 I/O 技术来规避。

具体流程看下图:Using Direct I/O with DMA

2、mmap() + write()

mmap() SCI 用于将 I/O 外设(e.g. 磁盘)中的一个文件、或一段内存空间(e.g. Kernel Buffer Cache)直接映射到 User Process 虚拟地址空间中的 Memory Mapping Segment,然后 User Process 就可以通过指针的方式来直接访问这一段内存,而不必再调用传统的 read() / write() SCI。

申请空间函数原型:

  • addr 参数:分配 MMS 映射区的入口地址,由 Kernel 指定,调用时传入 NULL。

  • length 参数:指示 MMS 映射区的大小。

  • prot 参数:指示 MMS 映射区的权限,可选:PROT_READ、PROT_WRITE、PROT_READ|PROT_WRITE 类型。

  • flags 参数:标志位参数,可选:

  • MAP_SHARED:映射区所做的修改会反映到物理设备(磁盘)上。

  • MAP_PRIVATE:映射区所做的修改不会反映到物理设备上。

  • fd 参数:指示 MMS 映射区的文件描述符。

  • offset 参数:指示映射文件的偏移量,为 4k 的整数倍,可以映射整个文件,也可以只映射一部分内容。

  • 函数返回值:

  • 成功:更新 addr 入口地址。

  • 失败:更新 MAP_FAILED 宏。

void *mmap(void *adrr, size_t length, int prot, int flags, int fd, off_t offset);

释放空间函数原型:

  • addr 参数:分配 MMS 映射区的入口地址,由 Kernel 指定,调用时传入 NULL。

  • length 参数:指示 MMS 映射区的大小。

  • 函数返回值:

  • 成功:返回 0。

  • 失败:返回 -1。

int munmap(void *addr, size_t length)

可见,mmap() 是一种高效的 I/O 方式。通过 mmap() 和 write() 结合的方式,可以实现一定程度的零拷贝优化。

// 读
buf = mmap(diskfd, len);
// 写
write(sockfd, buf, len);

mmap() + write() 的 I/O 处理流程如下。

mmap() 映射:

  1. Application 发起 mmap() 调用,进行文件操作,CPU 模式从用户态切换到内核态。

  2. mmap() 将指定的 Kernel Buffer Cache 空间映射到 Application 虚拟地址空间。

  3. mmap() 返回,CPU 模式从内核态切换到用户态。

  4. 在 Application 后续的文件访问中,如果出现 Page Cache Miss,则触发缺页异常,并执行 Page Cache 机制。通过已经建立好的映射关系,只使用一次 DMA Copy 就将文件数据从磁盘拷贝到 Application User Buffer 中。

write() 写入:

  1. Application 发起 write() 调用,CPU 模式从用户态切换到内核态。

  2. 由于此时 Application User Buffer 和 Kernel Buffer Cache 的数据是一致的,所以直接从 Kernel Buffer Cache 中 CPU Copy 到 Kernel Socket Buffer,并最终从 NIC 发出。

  3. write() 返回,CPU 模式从内核态切换到用户态。

可见,mmap() + write() 的 I/O 处理流程减少了一次 CPU Copy,但没有减少 CPU 模式切换的次数。另外,由于 mmap() 的进程间共享特性,非常适用于共享大文件的 I/O 场景。

mmap() + write() 的缺点:当 mmap 映射一个文件时,如果这个文件被另一个进程所截获,那么 write 系统调用会因为访问非法地址被 SIGBUS 信号终止,SIGBUS 默认会杀死进程并产生一个 coredump。解决这个问题通常需要使用文件租借锁实现。在 mmap 之前加锁,操作完之后解锁。即:首先为文件申请一个租借锁,当其他进程想要截断这个文件时,内核会发送一个实时的 RT_SIGNAL_LEASE 信号,告诉当前进程有进程在试图破坏文件,这样 write 在被 SIGBUS 杀死之前,会被中断,返回已经写入的字节数,并设置 errno 为 success。

3、sendfile()

Linux Kernel 从 v2.1 开始引入了 sendfile(),用于在 Kernel space 中将一个 in_fd 的内容复制到另一个 out_fd 中,数据无需经过 Userspace,所以应用在 I/O 流程中,可以减少一次 CPU Copy。同时,sendfile() 比 mmap() 方式更具安全性。

函数原型:

  • out_fd 参数:目标文件描述符,数据输入文件。

  • in_fd 参数:源文件描述符,数据输出文件。该文件必须是可以 mmap 的。

  • offset 参数:指定从源文件的哪个位置开始读取数据,若不需要指定,传递一个 NULL。

  • count 参数:指定要发送的数据字节数。

  • 函数返回值:

  • 成功:返回复制的字节数。

  • 失败:返回 -1,并设置 errno 全局变量来指示错误类型。

#include <sys/sendfile.h>ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

sendfile() 处理流程:

  1. Application 调用 sendfile(),CPU 从用户态切换到内核态。

  2. Kernel 将数据通过 DMA Copy 从磁盘设备写入 Kernel Buffer Cache。

  3. Kernel 将数据从 Kernel Buffer Cache 中 CPU Copy 到 Kernel Socket Buffer。

  4. Kernel 将数据从 Kernel Socket Buffer 中 DMA Copy 到 I/O 网卡设备。

  5. sendfile() 返回,CPU 从内核态切换到用户态。

4、sendfile() + DMA Gather Copy

上文知道 sendfile() 还具有一次 CPU Copy,通过结合 DMA Gather Copy 技术,可以进一步优化它。

DMA Gather Copy 技术,底层有 I/O 外设的 DMA Controller 提供的 Gather 功能支撑,所以又称为 “DMA 硬件辅助的 sendfile()“。借助硬件设备的帮助,在数据从 Kernel Buffer Cache 到 Kernel Socket Buffer 之间,并不会真正的数据拷贝,而是仅拷贝了缓冲区描述符(fd + size)。待完成后,DMA Controller,可以根据这些缓冲区描述符找到依旧存储在 Kernel Buffer Cache 中的数据,并进行 DMA Copy。

显然,DMA Gather Copy 技术依旧是 ZONE_DMA 物理内存空间共享性的一个应用场景。

sendfile() + DMA Gather Copy 的处理流程:

  1. Application 调用 sendfile(),CPU 从用户态切换到内核态模式。

  2. Kernel 将数据通过 DMA Copy 从磁盘设备写入 Kernel Buffer Cache。

  3. Kernel 将数据的缓冲区描述符从 Kernel Buffer Cache 中 CPU Copy 到 Kernel Socket Buffer(几乎不费资源)。

  4. 基于缓冲区描述符,CPU 利用 DMA Controller 的 Gather / Scatter 操作直接批量地将数据从 Kernel Buffer Cache 中 DMA Copy 到网卡设备。

  5. sendfile() 返回,CPU 从内核态切换到用户态。

5、splice()

splice() 与 sendfile() 的处理流程类似,但数据传输方式有本质不同。

  • sendfile() 的传输方式是 CPU Copy,且具有数据大小限制;

  • splice() 的传输方式是 Pipeline,打破了数据范围的限制。但也要求 2 个 fd 中至少有一个必须是管道设备类型。

函数原型:

  • fd_in 参数:源文件描述符,数据输出文件。

  • off_in 参数:输出偏移量指针,表示从源文件描述符的哪个位置开始读取数据。

  • fd_out 参数:目标文件描述符,数据输入文件。

  • off_out 参数:输入偏移量指针,表示从目标文件描述符的哪个位置开始写入数据。

  • len 参数:指示要传输的数据长度。

  • flags:控制数据传输的行为的标志位。

#define _GNU_SOURCE         /* See feature_test_macros(7) */#include <fcntl.h>ssize_t splice(int fd_in, loff_t *off_in, int fd_out, loff_t *off_out, size_t len, unsigned int flags);

splice() 的处理流程如下:

  1. Application 调用 splice(),CPU 从用户态切换到内核态。

  2. Kernel 将数据通过 DMA Copy 从磁盘设备写入 Kernel Buffer Cache。

  3. Kernel 在 Kernel Buffer Cache 和 Kernel Socket Buffer 之间建立 Pipeline 传输。

  4. Kernel 将数据从 Kernel Socket Buffer 中 DMA Copy 到 I/O 网卡设备。

  5. splice() 返回,CPU 从内核态切换到用户态。

6、缓冲区共享技术

缓冲区共享技术,是对 Linux I/O 的一种颠覆,所以往往需要由 Application 和设备来共同实现。

其核心思想是:每个 Applications 都维护着一个 Buffer Pool,并且这个 Buffer Pool 可以同时映射到 Kernel 虚拟地址空间,这样 Userspace 和 Kernel space 就拥有了一块共享的空间。以此来规避掉 CPU Copy 的行为。

相关文章:

Linux实现原理 — I/O 处理流程与优化手段

Linux I/O 接口 Linux I/O 接口可以分为以下几种类型&#xff1a; 文件 I/O 接口&#xff1a;用于对文件进行读写操作的接口&#xff0c;包括 open()、read()、write()、close()、lseek() 等。 网络 I/O 接口&#xff1a;用于网络通信的接口&#xff0c;包括 socket()、conne…...

第 367 场 LeetCode 周赛题解

A 找出满足差值条件的下标 I 模拟 class Solution { public:vector<int> findIndices(vector<int> &nums, int indexDifference, int valueDifference) {int n nums.size();for (int i 0; i < n; i)for (int j 0; j < i; j)if (i - j > indexDiffe…...

最新百度统计配置图文教程,获取siteId、百度统计AccessToken、百度统计代码教程

一、前言 很多网友开发者都不知道百度统计siteId、百度统计token怎么获取&#xff0c;在网上找的教程都是几年前老的教程&#xff0c;因此给大家出一期详细百度统计siteId、百度统计token、百度统计代码获取详细步骤教程。 二、登录到百度统计 1.1 登录到百度统计官网 使用…...

【C++ 学习 ㉘】- 详解 C++11 的列表初始化

目录 一、C11 简介 二、列表初始化 2.1 - 统一初始化 2.2 - 列表初始化的使用细节 2.2.1 - 聚合类型的定义 2.2.2 - 注意事项 2.3 - initializer_list 2.3.1 - 基本使用 2.3.2 - 源码剖析 一、C11 简介 1998 年&#xff0c;C 标准委员会发布了第一版 C 标准&#xff0…...

OpenCV12-图像卷积

OpenCV12-图像卷积 图像卷积 图像卷积 OpenCV中提供了filt2D()函数用于实现图像和卷积模板之间的卷积运算&#xff1a; void filter2D(InputArray src, // 输入图像OutputArray dst, // 输出图像int ddepth, // 输出图像数据类型&#xff08;深度&#xff09;&#xff…...

MVCC与BufferPool缓存机制

MVCC多版本并发控制机制 Mysql在可重复读隔离级别下如何保证事务较高的隔离性&#xff0c;我们上节课给大家演示过&#xff0c;同样的sql查询语句在一个事务里多次执行查询结果相同&#xff0c;就算其它事务对数据有修改也不会影响当前事务sql语句的查询结果。 这个隔离性就是…...

POI、Easy Excel操作Excel

文章目录 1.常用的场景2.基本功能3.Excel在Java中是一个对象4. 简单的写&#xff08;07版本&#xff08;.xlsx&#xff09;Excel&#xff09;大文件写HSSF大文件写XSSF大文件写SXSSF 5. Excel读5.1 读取遇到类型转化问题该怎么解决5.2 遇到Excel公式怎么办 6. Easy Excel6.1简单…...

网络安全(黑客)自学方向

每年报考网络安全专业的人数很多&#xff0c;但不少同学听说千万别学网络安全&#xff0c;害怕网络安全专业很难就业。下面就带大家深入了解一下网络安全专业毕业后可以干什么&#xff0c;包括网络安全专业的就业前景和方向等。 随着信息化时代的到来&#xff0c;网络安全行业…...

react写一个简单的3d滚轮picker组件

1. TreeDPicker.tsx文件 原理就不想赘述了, 想了解的话, 网址在: 使用vue写一个picker插件,使用3d滚轮的原理_vue3中支持3d picker选择器插件-CSDN博客 import React, { useEffect, useRef, Ref, useState } from "react"; import Animate from "../utils/an…...

Compose竖向列表LazyColumn

基础列表一 LazyColumn组件中用items加载数据&#xff0c;rememberLazyListState()结合rememberCoroutineScope()实现返回顶部。 /*** 基础列表一*/ Composable fun Items() {Box(modifier Modifier.fillMaxSize()) {val context LocalContext.currentval dataList arrayLi…...

6.自定义相机控制器

愿你出走半生,归来仍是少年&#xff01; Cesium For Unity自带的Dynamic Camera,拥有优秀的动态展示效果&#xff0c;但是其对于场景的交互方式用起来不是很舒服。 通过模仿Cesium JS 的交互方式&#xff0c;实现在Unity中的交互&#xff1a; 通过鼠标左键拖拽实现场景平移通过…...

一文带你GO语言入门

什么是go语言? Go语言(又称Golang)是Google开发的一种静态强类型、编译型、并发型,并具有垃圾回收功能的编程语言。Go语言的主要特点包括:- 简洁和简单 - 语法简单明快,易于学习和使用 特点 高效 编译速度快,执行效率高 并发支持 原生支持并发,利用goroutine实现高效的并发…...

前后端小项目链接

1.vue的创建 vue的项目创建 1.1 vue create vue_name 1.2 Babel Router(路由) CSS Pre-processors 路由可通过&#xff1a;npm i vue-router3.5.2 -S 下载 1.3less 1.4 In dedicated config files 1.5 启动命令&#xff1a;npm run serve 端口号在vue.config。js中配置 devS…...

编辑器功能:用一个快捷键来【锁定】或【解开】Inspector面板

一、需求 我有一个脚本&#xff0c;上面暴露了许多参数&#xff0c;我要在场景中拖物体给它进行配置。 如果不锁定Inspector面板的话&#xff0c;每次点击物体后&#xff0c;Inspector的内容就是刚点击的物体的内容&#xff0c;而不是挂载脚本的参数面板。 二、 解决 &…...

Vue 网络处理 - axios 异步请求的使用,请求响应拦截器(最佳实践)

目录 一、axiox 1.1、axios 简介 1.2、axios 基本使用 1.2.1、下载核心 js 文件. 1.2.2、发送 GET 异步请求 1.2.3、发送 POST 异步请求 1.2.4、发送 GET、POST 请求最佳实践 1.3、请求响应拦截器 1.3.1、拦截器解释 1.3.2、请求拦截器的使用 1.3.3、响应拦截器的使…...

关于W5500网卡使用过程的部分问题记录

某个项目中用到了W5500这种自带网络协议栈的网卡芯片&#xff0c;由于该项目开发时间很紧&#xff0c;就临时网上买了一些模块拼凑到了一套系统&#xff0c;经过验证果真这种拼积木的方法只能用在学生实验开发中&#xff0c;真不能拿来做工程应用&#xff0c;硬件太不稳定很容易…...

Unity DOTS World Entity ArchType Component EntityManager System概述

最近DOTS终于发布了正式的版本, 我们来分享以下DOTS里面地几个关键概念&#xff0c;方便大家上手学习掌握Unity DOTS开发。 Unity DOTS 中所有的Entities 都是被放到World世界中。每个Entity在它所在的World里面有唯一不同的ID号来区分。DOTS项目中可以同时有多个World。每个W…...

最详细STM32,cubeMX 点亮 led

这篇文章将详细介绍 如何在 stm32103 板子上点亮一个LED. 文章目录 前言一、开发环境搭建。二、LED 原理图解读三、什么是 GPIO四、cubeMX 配置工程五、解读 cubeMX 生成的代码六、延时函数七、控制引脚状态函数点亮 LED 八、GPIO 的工作模式九、为什么使用推挽输出驱动 LED总结…...

论文阅读:Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data

目录 摘要 Motivation 整体架构流程 技术细节 雷达和图像数据的同步 小结 论文地址: [2203.16258] Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data (arxiv.org) 论文代码&#xff1a;GitHub - valeoai/SLidR: Official PyTorch implementati…...

前端版本控制工具,常见的Git 和SVN

目录 前言GitGit简介Git的优势Git常用指令常见的Git服务 SVN (Subversion)SVN简介SVN的优势SVN常用指令SVN与Git的区别 &#x1f44d; 点赞&#xff0c;你的认可是我创作的动力&#xff01; ⭐️ 收藏&#xff0c;你的青睐是我努力的方向&#xff01; ✏️ 评论&#xff0c;你…...

C++ —— Tinyxml2在Vs2017下相关使用2(较文1更复杂,附源码)

相关链接 C —— Tinyxml2在Vs2017下相关使用1&#xff08;附源码&#xff09; tinyxml2简介 TinyXML2是一个简单&#xff0c;小巧&#xff0c;高效&#xff0c;CXML解析器&#xff0c;可以很容易地集成到其他程序中。TinyXML-2解析一个XML文档&#xff0c;并从中构建一个 可以…...

阿里内推强推的并发编程学习笔记,原理+实战+面试题,面面俱到!

并发编程 谈到并发编程&#xff0c;可能很多人都有过经验&#xff0c;甚至比我了解的更多。 那么并发与并行的区别又是什么&#xff1f; 并发编程是编程中的核心问题&#xff0c;实践中&#xff0c;当人们希望利用计算机处理一些现实世界问题&#xff0c;以及希望同时处理多…...

域名注册查询流程

域名注册查询怎么查域名是否被注册?域名注册查询如何查域名的过期时间和注册商?域名注册查询用什么工具?下面是关于域名注册查询流程介绍。 1、域名注册查询可以用什么工具? 这里可以使用聚查工具&#xff0c;聚查包括&#xff1a;whois 查询、建站历史查询、反链查询、P…...

【Linux学习笔记】代码编辑工具vim

1. vim工具基本模式的转换2. vim命令模式下的各种编辑命令2.1. 光标行定位2.2. 光标自由定位2.3. 复制粘贴2.4. 删除2.5. 文本的大小写替换2.6. 文本的替换2.7. 文本的前删后删2.8. 撤销操作 3. vim底行模式下的命令3.1. 设置行号与取消设置行号3.2. 分屏操作3.3. 在不退出vim的…...

Android Boring SSL

前期设置 SSLContext.getInstance(“TLS”)SSLContext.init()SSLContext.getSocketFactory()SSLSocketFactory.createSocket()NativeSsl.newInstance()BioWrapper 的创建ConscryptEngineSocket.startHandshake() TLS协商 state_start_connect(TLS)state_enter_early_data(TLS)s…...

中国人民大学与加拿大女王大学金融硕士项目:开启你的金融精英之路

在全球化的今天&#xff0c;金融行业的发展日新月异&#xff0c;对金融人才的需求也日益增长。为了满足这一需求&#xff0c;中国人民大学与加拿大女王大学联合推出了金融硕士项目&#xff0c;旨在培养具有国际视野、专业素养和创新能力的金融精英。 这一开创性的项目将两大世…...

HashSet编程小案例,控制生日和姓名。重写HashCode

Java编程&#xff1a; 定义员工Employee类&#xff0c;该类包含&#xff1a;private成员属性name&#xff0c;sal&#xff0c;birthday(MyDate类型)&#xff0c; 其中birthday为MyDate类型(属性包括&#xff1a;year&#xff0c;month&#xff0c;day)&#xff0c; 要求&…...

虚幻阴影整理

虚拟阴影贴图&#xff08;VSM&#xff09;是一种全新的阴影贴图方法&#xff0c;可以提供稳定的高分辨率阴影。通过与虚幻引擎5的Nanite虚拟几何体、Lumen全局光照和反射以及世界分区功能结合使用&#xff0c;它能够实现电影级的品质效果&#xff0c;为大型开放场景提供光照。 …...

MySQL数据库(一)

数据库 —— 基础 1. 数据库 DataBase 数据库管理系统 2. SQL语言2.1 DDL数据定义语言2.1.1 数据库基础操作2.1.2 数据表基础操作2.1.3 字段基础操作 2.2 DML表记录管理2.2.1 插入数据INSERT2.2.2 更新数据UPDATE2.2.3 删除数据DELETE 3. SQL数据类型3.1 数值类型3.1.1 整数类型…...

C++11 新特性

C11 新特性 C11 新特性统一的列表初始化声明auto 关键字decltype 关键字nullptr 关键字 关键字 using使用 using 在子类中引用基类的成员使用 using 关键字定义类型别名 范围-based for 循环右值引用和移动语义左值引用和右值引用右值引用使用场景和意义完美转发 lambda表达式移…...