使用transformers过程中出现的bug
1. The following model_kwargs are not used by the model: ['encoder_hidden_states', 'encoder_attention_mask'] (note: typos in the generate arguments will also show up in this list)
使用text_decoder就出现上述错误,这是由于transformers版本不兼容导致的
from transformers import AutoModel, AutoConfig, BertGenerationDecoder
decoder_config = AutoConfig.from_pretrained(args['text_checkpoint'])text_decoder = BertGenerationDecoder(config=decoder_config)output = self.text_decoder.generate(input_ids=cls_input_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, max_length=self.args['max_seq_length'], do_sample=True, num_beams=self.args['beam_size'], length_penalty=1.0, use_cache=True,)
解决办法:将transformer的版本换到以下范围, 4.15.0<=transformers<4.22.0,transformers>=4.25.0
比如:pip install transformers==4.25.1 or pip install transformers==4.20.1
2. No module named 'transformers.generation_beam_constraints' (其中transformers==4.28.1)
(1)解决办法
将:from transformers import generation_beam_constraints
改为:from transformers.generation import beam_constraints
(2)其他例子
有问题的代码:
# 可以在transformers == 4.23.1版本上面运行
from transformers.generation_beam_constraints import Constraint
from transformers.generation_beam_search import BeamScorer, BeamSearchScorer
from transformers.generation_logits_process import (EncoderNoRepeatNGramLogitsProcessor,ForcedBOSTokenLogitsProcessor,ForcedEOSTokenLogitsProcessor,HammingDiversityLogitsProcessor,InfNanRemoveLogitsProcessor,LogitsProcessorList,MinLengthLogitsProcessor,NoBadWordsLogitsProcessor,NoRepeatNGramLogitsProcessor,PrefixConstrainedLogitsProcessor,RepetitionPenaltyLogitsProcessor,TemperatureLogitsWarper,TopKLogitsWarper,TopPLogitsWarper,)
from transformers.generation_stopping_criteria import (MaxLengthCriteria,MaxTimeCriteria,StoppingCriteria,StoppingCriteriaList,validate_stopping_criteria,
)
修正后的代码:
# 可以在transformers == 4.28.1版本上面运行
from transformers.generation.beam_constraints import Constraint
from transformers.generation.beam_search import BeamScorer, BeamSearchScorer
from transformers.generation.logits_process import (EncoderNoRepeatNGramLogitsProcessor,ForcedBOSTokenLogitsProcessor,ForcedEOSTokenLogitsProcessor,HammingDiversityLogitsProcessor,InfNanRemoveLogitsProcessor,LogitsProcessorList,MinLengthLogitsProcessor,NoBadWordsLogitsProcessor,NoRepeatNGramLogitsProcessor,PrefixConstrainedLogitsProcessor,RepetitionPenaltyLogitsProcessor,TemperatureLogitsWarper,TopKLogitsWarper,TopPLogitsWarper,)
from transformers.generation.stopping_criteria import (MaxLengthCriteria,MaxTimeCriteria,StoppingCriteria,StoppingCriteriaList,validate_stopping_criteria,
)
相关文章:
使用transformers过程中出现的bug
1. The following model_kwargs are not used by the model: [encoder_hidden_states, encoder_attention_mask] (note: typos in the generate arguments will also show up in this list) 使用text_decoder就出现上述错误,这是由于transformers版本不兼容导致的 …...
Hadoop3教程(二十二):Yarn的基础架构与工作流程
文章目录 (126)基础架构(127)YARN的工作机制(128)作业全流程参考文献 (126)基础架构 之前基本介绍完了Hadoop的几个核心组件,接下来可以思考下,在MR程序运行…...
离线 notepad++ 添加到右键菜单
复制下面代码,修改文件后缀名为:reg Windows Registry Editor Version 5.00[HKEY_CLASSES_ROOT\*\shell\NotePad] "Notepad" "Icon""D:\\Notepad\\notepad.exe,0"[HKEY_CLASSES_ROOT\*\shell\NotePad\Command] "D:\…...
怎么让英文大语言模型支持中文?--构建中文tokenization--继续预训练--指令微调
1 构建中文tokenization 参考链接:https://zhuanlan.zhihu.com/p/639144223 1.1 为什么需要 构建中文tokenization? 原始的llama模型对中文的支持不太友好,接下来本文将讲解如何去扩充vocab里面的词以对中文进行token化。 1.2 如何对 原始数…...
笙默考试管理系统-MyExamTest----codemirror(35)
笙默考试管理系统-MyExamTest----codemirror(35) 目录 一、 笙默考试管理系统-MyExamTest 二、 笙默考试管理系统-MyExamTest 三、 笙默考试管理系统-MyExamTest 四、 笙默考试管理系统-MyExamTest 五、 笙默考试管理系统-MyExamTest 笙默考试…...
MMKV(2)
API 初始化和实例获取: MMKV.initialize(Context context): 初始化MMKV库。通常在应用程序的入口点调用此方法。 MMKV.defaultMMKV(): 获取默认的MMKV实例。默认实例使用默认的存储路径和加密方式。 MMKV.mmkvWithID(String mmapID): 根据给定的ID获取MMKV实例。…...
Spring Boot项目中使用 TrueLicense 生成和验证License(附源码)
1、Linux 在客户linux上新建layman目录,导入license.sh文件, [rootlocalhost layman]# mkdir -p /laymanlicense.sh文件内容: #!/bin/bash # 1.获取要监控的本地服务器IP地址 IPifconfig | grep inet | grep -vE inet6|127.0.0.1 | awk {p…...
ES6 Iterator 和 for...of 循环
1.iterator 概念 ES6 添加了Map和Set。这样就有了四种数据集合,需要一种统一的接口机制来处理所有不同的数据结构。遍历器(Iterator)就是这样一种机制。它是一种接口,为各种不同的数据结构提供统一的访问机制。任何数据结构只要部…...
ubuntu20.04 nvidia显卡驱动掉了,变成开源驱动,在软件与更新里选择专有驱动,下载出错,调整ubuntu镜像源之后成功修复
驱动配置好,环境隔了一段时间,打开Ubuntu发现装好的驱动又掉了,软件与更新 那里,附加驱动,显示开源驱动,命令行输入 nvidia-smi 命令查找不到驱动。 点击上面的 nvidia-driver-470(专有&#x…...
华为FAT模式无线AP配置实例
硬件:AP3010DN 软件版本:VRP software, Version 5.170 (AP3010DN-V2 FAT V200R010C00SPCf02) [Huawei]dis ver Huawei Versatile Routing Platform Software VRP (R) software, Version 5.170 (AP3010DN-V2 FAT V200R010C00SPCf02) Copyright (C) 2011…...
nodejs基于vue 学生论坛设计与实现
随着网络技术的不断成熟,带动了学生论坛,它彻底改变了过去传统的管理方式,不仅使服务管理难度变低了,还提升了管理的灵活性。 是本系统的开发平台 系统中管理员主要是为了安全有效地存储和管理各类信息, 这种个性化的平…...
017 基于Spring Boot的食堂管理系统
部分代码地址: https://github.com/XinChennn/xc017-stglxt 基于Spring Boot的食堂管理系统 项目介绍 本项目是基于Java的管理系统。采用前后端分离开发。前端基于bootstrap框架实现,后端使用Java语言开发,技术栈包括但不限于SpringBoot、…...
常用的二十种设计模式(下)-C++
设计模式 C中常用的设计模式有很多,设计模式是解决常见问题的经过验证的最佳实践。以下是一些常用的设计模式: 单例模式(Singleton):确保一个类只有一个实例,并提供一个全局访问点。工厂模式(…...
C#桶排序算法
前言 桶排序是一种线性时间复杂度的排序算法,它将待排序的数据分到有限数量的桶中,每个桶再进行单独排序,最后将所有桶中的数据按顺序依次取出,即可得到排序结果。 实现原理 首先根据待排序数据,确定需要的桶的数量。…...
快速了解服务器单CPU与双CPU
在当今快节奏的技术环境中,用户们对功能强大且高效的服务器配置需求不断增长。CPU作为构成任何计算基础设施的骨干,服务器的“大脑”,负责执行计算、控制数据流并协调各个组件之间的任务,是服务器选择硬件中的重要一环。因此…...
c# Dictionary、ConcurrentDictionary的使用
Dictionary Dictionary 用于存储键-值对的集合。如果需要高效地存储键-值对并快速查找,请使用 Dictionary。 注意,键必须是唯一的,值可以重复。 using System; using System.Collections.Generic; using System.Linq;class Program {stati…...
大数据中间件——Kafka
Kafka安装配置 首先我们把kafka的安装包上传到虚拟机中: 解压到对应的目录并修改对应的文件名: 首先我们来到kafka的config目录,我们第一个要修改的文件就是server.properties文件,修改内容如下: # Licensed to the …...
HarmonyOS/OpenHarmony原生应用-ArkTS万能卡片组件Slider
滑动条组件,通常用于快速调节设置值,如音量调节、亮度调节等应用场景。该组件从API Version 7开始支持。无子组件 一、接口 Slider(options?: {value?: number, min?: number, max?: number, step?: number, style?: SliderStyle, direction?: Ax…...
SpringCloud: sentinel链路限流
一、配置文件要增加 spring.cloud.sentinel.webContextUnify: false二、在要限流的业务方法上使用SentinelResource注解 package cn.edu.tju.service;import com.alibaba.csp.sentinel.annotation.SentinelResource; import com.alibaba.csp.sentinel.slots.block.BlockExcept…...
UML 中的关系
种类 继承、实现、组合、聚合、关联、依赖 理解 继承和实现的关系强度最大。组合代表着实体之间共同构成一个主体内部的组成部分无法单独支撑,聚合则代表层级更高的一种关联涉及的实体都是独立的个体共同组合起来构成一个主体 个体之间是可以单独工作的。 组合和…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
