当前位置: 首页 > news >正文

数据结构预算法之买卖股票的最好时机(三)动态规划

目录:
一.题目
知识点:动态规划
二.动态规划数组思路确定
1.dp数组以及下标的含义
2.确定递推公式
3.dp数组如何初始化
4.确定遍历顺序
5.举例推导dp数组

一.题目

知识点:动态规划

动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果

二.动态规划数组思路

这道题目相对前面两道题目难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

  1. 确定dp数组以及下标的含义

一天一共就有五个状态,

(0)没有操作 (其实我们也可以不设置这个状态)

(1)第一次持有股票

(2)第一次不持有股票

(3)第二次持有股票

(4)第二次不持有股票

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。

2.确定递推公式

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]

  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]

  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

3.dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?

第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

4.确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

5.举例推导dp数组

以输入[1,2,3,4,5]为例

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。如果想不明白的录友也可以这么理解:如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};
  • 时间复杂度:O(n)

  • 空间复杂度:O(n × 5)

java实现

class Solution {public int maxProfit(int[] prices) {int len = prices.length;// 边界判断, 题目中 length >= 1, 所以可省去if (prices.length == 0) return 0;/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];// 初始化第二次买入的状态是确保 最后结果是最多两次买卖的最大利润dp[0][3] = -prices[0];for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i][3] + prices[i]);}return dp[len - 1][4];}
}

相关文章:

数据结构预算法之买卖股票的最好时机(三)动态规划

目录&#xff1a;一.题目知识点&#xff1a;动态规划二.动态规划数组思路确定1.dp数组以及下标的含义2.确定递推公式3.dp数组如何初始化4.确定遍历顺序5.举例推导dp数组一.题目知识点&#xff1a;动态规划动态规划算法的基本思想是&#xff1a;将待求解的问题分解成若干个相互联…...

【数通网络交换基础梳理2】三层设备、网关、ARP表、VLAN、路由表及跨网段路由下一跳转发原理

一、不同网段如何通讯 同网段可以依靠二层交换机通讯&#xff0c;网络中存在多个网段192.168.1.1/24 172.16.1.1/24 173.73.1.1/24情况下如何互相通讯&#xff1f;上节留一下的问题&#xff0c;这节继续讲解。 1、这里以Ping命令讲解&#xff0c;PC1 ping173.73.1.2&#xf…...

Java-排序链表问题

Java-排序链表问题题目题解方法&#xff1a;自顶向下归并排序算法题目 给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a; 示例 2&#xff1a; 示例 3&#xff1a; 提示&#xff1a; *链表中节点的数目在范围 [0, 5 * 104]…...

c++之二叉树【进阶版】

前言 在c语言阶段的数据结构系列中已经学习过二叉树&#xff0c;但是这篇文章是二叉树的进阶版&#xff0c;因为首先就会讲到一种树形结构“二叉搜索树”&#xff0c;学习二叉搜索树的目标是为了更好的理解map和set的特性。二叉搜索树的特性就是左子树键值小于根&#xff0c;右…...

【数据库】 SQLServer

SQL Server 安装 配置 修改SQL Server默认的数据库文件保存路径_ 认识 master &#xff1a;是SQL Server中最重要的系统数据 库&#xff0c;存储SQL Server中的元数据。 Model&#xff1a;模板数据库&#xff0c;在创建新的数据库时&#xff0c;SQL Server 将会复制此数据…...

Linux 4.19 内核中 spinlock 概览

Linux内核中 spinlock相关数据结构和代码实现涉及的文件还是挺多的&#xff0c;这篇博客尝试从文件的角度来梳理一下 spinlock的相关数据结构和代码实现&#xff0c;适合想大概了解 Linux内核中 spinlock从上层 API到底层实现间的调用路径和传参变化&#xff0c;尤其适合了解 s…...

TensorFlow 1.x学习(系列二 :1):基本概念TensorFlow的基本介绍,图,会话,会话中的run(),placeholder(),常见的报错

目录1.基本介绍2.图的结构3.会话&#xff0c;会话的run方法4.placeholder5.返回值异常写在前边的话&#xff1a;之前发布过一个关于TensorFlow1.x的转载系列&#xff0c;自己将基本的TensorFlow操作敲了一遍&#xff0c;但是仍然有很多地方理解的不够深入。所以重开一个系列&am…...

javaEE 初阶 — 关于 IPv4、IPv6 协议、NAT(网络地址转换)、动态分配 IP 地址 的介绍

文章目录1. IPv42. IPv63. NAT4. 动态分配 IP 地址1. IPv4 在互联网的世界中只有 0 和1 &#xff0c;所以每个人都有一个由 0 和 1 组成的地址来让别人找到你。 这段由 0 和 1 组成的地址叫 IP 地址&#xff0c;这是互联网的基础资源&#xff0c;可以简单的理解为互联网的土地。…...

《Qt 6 C++开发指南》简介

我们编写的新书《Qt 6 C开发指南》在2月份终于正式发行销售了&#xff0c;这本书是对2018年5月出版的《Qt 5.9 C开发指南》的重磅升级。以下是本书前言的部分内容&#xff0c;算是对《Qt 6 C开发指南》的一个简介。1&#xff0e;编写本书的目的《Qt 5.9C开发指南》是我写的第一…...

CleanMyMac是什么清理软件?及使用教程

你知道CleanMyMac是什么吗&#xff1f;它的字面意思为“清理我的Mac”&#xff0c;作为软件&#xff0c;那就是一款Mac清理工具&#xff0c;Mac OS X 系统下知名系统清理软件&#xff0c;是数以万计的Mac用户的选择。它可以流畅地与系统性能相结合&#xff0c;只需简单的步骤就…...

Linux小黑板(9):共享内存

"My poor lost soul"上章花了不少的篇幅讲了讲基于管道((匿名、命名))技术实现的进程间通信。进程为什么需要通信&#xff1f;目的是为了完成进程间的"协同",提高处理数据的能力、优化业务逻辑的实现等等&#xff0c;在linux中我们已经谈过了一个通信的大类…...

Detr源码解读(mmdetection)

Detr源码解读(mmdetection) 1、原理简要介绍 整体流程&#xff1a; 在给定一张输入图像后&#xff0c;1&#xff09;特征向量提取&#xff1a; 首先经过ResNet提取图像的最后一层特征图F。注意此处仅仅用了一层特征图&#xff0c;是因为后续计算复杂度原因&#xff0c;另外&am…...

一个.Net Core开发的,撑起月6亿PV开源监控解决方案

更多开源项目请查看&#xff1a;一个专注推荐.Net开源项目的榜单 项目发布后&#xff0c;对于我们程序员来说&#xff0c;项目还不是真正的结束&#xff0c;保证项目的稳定运行也是非常重要的&#xff0c;而对于服务器的监控&#xff0c;就是保证稳定运行的手段之一。对数据库、…...

C语言数据结构初阶(2)----顺序表

目录 1. 顺序表的概念及结构 2. 动态顺序表的接口实现 2.1 SLInit(SL* ps) 的实现 2.2 SLDestory(SL* ps) 的实现 2.3 SLPrint(SL* ps) 的实现 2.4 SLCheckCapacity(SL* ps) 的实现 2.5 SLPushBack(SL* ps, SLDataType x) 的实现 2.6 SLPopBack(SL* ps) 的实现 2.7 SLP…...

K8S常用命令速查手册

K8S常用命令速查手册一. K8S日常维护常用命令1.1 查看kubectl版本1.2 启动kubelet1.3 master节点执行查看所有的work-node节点列表1.4 查看所有的pod1.5 检查kubelet运行状态排查问题1.6 诊断某pod故障1.7 诊断kubelet故障方式一1.8 诊断kubelet故障方式二二. 端口策略相关2.1 …...

Linux系统下命令行安装MySQL5.6+详细步骤

1、因为想在腾讯云的服务器上创建自己的数据库&#xff0c;所以我在这里是通过使用Xshell 7来连接腾讯云的远程服务器&#xff1b; 2、Xshell 7与服务器连接好之后&#xff0c;就可以开始进行数据库的安装了&#xff08;如果服务器曾经安装过数据库&#xff0c;得将之前安装的…...

13.STM32超声波模块讲解与实战

目录 1.超声波模块讲解 2.超声波时序图 3.超声波测距步骤 4.项目实战 1.超声波模块讲解 超声波传感器模块上面通常有两个超声波元器件&#xff0c;一个用于发射&#xff0c;一个用于接收。电路板上有4个引脚&#xff1a;VCC GND Trig&#xff08;触发&#xff09;&#xff…...

逆向之Windows PE结构

写在前面 对于Windows PE文件结构&#xff0c;个人认为还是非常有必要掌握和了解的&#xff0c;不管是在做逆向分析、免杀、病毒分析&#xff0c;脱壳加壳都是有着非常重要的技能。但是PE文件的学习又是一个非常枯燥过程&#xff0c;希望本文可以帮你有一个了解。 PE文件结构…...

ACL是什么

目录 一、ACL是什么 二、ACL的使用&#xff1a;setacl与getacl 1&#xff09;针对特定使用者的方式&#xff1a; 1. 创建acl_test1后设置其权限 2. 读取acl_test1的权限 2&#xff09;针对特定群组的方式&#xff1a; 3&#xff09;针对有效权限 mask 的设置方式&#xf…...

操作系统核心知识点整理--内存篇

操作系统核心知识点整理--内存篇按段对内存进行管理内存分区内存分页为什么需要多级页表TLB解决了多级页表什么样的缺陷?TLB缓存命中率高的原理是什么?段页结合: 为什么需要虚拟内存&#xff1f;虚拟地址到物理地址的转换过程段页式管理下程序如何载入内存&#xff1f;页面置…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

webpack面试题

面试题&#xff1a;webpack介绍和简单使用 一、webpack&#xff08;模块化打包工具&#xff09;1. webpack是把项目当作一个整体&#xff0c;通过给定的一个主文件&#xff0c;webpack将从这个主文件开始找到你项目当中的所有依赖文件&#xff0c;使用loaders来处理它们&#x…...

深度解析:etcd 在 Milvus 向量数据库中的关键作用

目录 &#x1f680; 深度解析&#xff1a;etcd 在 Milvus 向量数据库中的关键作用 &#x1f4a1; 什么是 etcd&#xff1f; &#x1f9e0; Milvus 架构简介 &#x1f4e6; etcd 在 Milvus 中的核心作用 &#x1f527; 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...

Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目

应用场景&#xff1a; 1、常规某个机器被钓鱼后门攻击后&#xff0c;我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后&#xff0c;我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...