【数组】移除元素(暴力遍历×双指针√)
一、力扣题目链接
27.移除元素
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。

你不需要考虑数组中超出新长度后面的元素。
二、思路
要知道数组的元素在内存地址中是连续的,不能单独删除数组中的某个元素,只能覆盖。
2.1暴力解法(对于数组,是覆盖,不是删除)
这个题目暴力的解法就是两层for循环,一个for循环遍历数组元素 ,第二个for循环更新数组。
删除过程如下:

很明显暴力解法的时间复杂度是O(n^2),这道题目暴力解法在leetcode上是可以过的。
代码如下:
// 时间复杂度:O(n^2)
// 空间复杂度:O(1)
class Solution {
public:int removeElement(vector<int>& nums, int val) {int size = nums.size();for (int i = 0; i < size; i++) {if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位for (int j = i + 1; j < size; j++) {nums[j - 1] = nums[j];}i--; // 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位size--; // 此时数组的大小-1}}return size;}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
2.2双指针法(强烈推荐)
双指针法(快慢指针法): 通过一个快指针和慢指针在一个for循环下完成两个for循环的工作。
定义快慢指针
- 快指针(侦察兵):寻找新数组的元素 ,新数组就是不含有目标元素的数组
- 慢指针(整理员):指向更新 新数组下标的位置
很多同学这道题目做的很懵,就是不理解 快慢指针究竟都是什么含义,所以一定要明确含义,后面的思路就更容易理解了。
删除过程如下(一个for循环一起走一下,不在意谁先走,谁后走):

双指针法(快慢指针法)在数组和链表的操作中是非常常见的,很多考察数组、链表、字符串等操作的面试题,都使用双指针法。
本题代码如下:
// 时间复杂度:O(n)
// 空间复杂度:O(1)
// 时间复杂度:O(n)
// 空间复杂度:O(1)
class Solution {
public:int removeElement(vector<int>& nums, int val) {int slowIndex = 0;for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {if (val != nums[fastIndex]) {nums[slowIndex++] = nums[fastIndex];// 如果不是要删除的,快慢一起走//块赋给慢,是因为有时候可能块比慢多走了,这个时候俩个指针可以理解为对移除元素:视而不见}else{//快指针++}}return slowIndex;}
};

难点正是在于这个if函数:而且我们很容易得知,快慢指针之间的distance,就是val的个数,他们做到的其实是对val的一种视而不见,遇到val,快指针++,而且慢指针由于只接收快指针的值,也视而不见。(而且刚开始其实也赋值了,只不过自己赋给自己动图没有体现~)
注意这个实现方法并没有改变元素的相对位置!

- 时间复杂度:O(n)
- 空间复杂度:O(1)
2.3容器暴力find大法()

class Solution {
public:int removeElement(vector<int>& nums, int val) {vector<int>::iterator it=find(nums.begin(),nums.end(),val);while(it!=nums.end()){nums.erase(it);it=find(it,nums.end(),val);//it++; 不能这么搞啊 元芳!}return nums.size();}
};

注意:val不仅仅只有一个,所以得写在while循环里;而且find下一次的开始位置,是上一次find结束的位置,直到走到了end(),这个是非常易错的地方,一定要小心!!
三、相关题目推荐
- 26.删除排序数组中的重复项
- 283.移动零
- 844.比较含退格的字符串
- 977.有序数组的平方
相关文章:
【数组】移除元素(暴力遍历×双指针√)
一、力扣题目链接 27.移除元素 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。 你不需要考虑数组中超出新长度后面的元素。 二、思路 要知道数组的元素在内存地址中是连续的,不…...
【笔试题】华为研发工程师编程题
1.汽水瓶 某商店规定:三个空汽水瓶可以换一瓶汽水,允许向老板借空汽水瓶(但是必须要归还)。 小张手上有n个空汽水瓶,她想知道自己最多可以喝到多少瓶汽水。 数据范围:输入的正整数满足 1≤n≤100 1≤n≤…...
如何转换Corona和Vray材质?cr材质转vr材质的方法
cr材质转vr材质的方法一:使用CG Magic插件,一键转换 CG Magic是一款基于3ds Max深度开发的智能化辅助插件,上千项实用功能,降低渲染时长,节省时间和精力,大幅简化工作流程,助力高效完成创作。 …...
蓝桥每日一题(day 4: 蓝桥592.门牌制作)--模拟--easy
#include <iostream> using namespace std; int main() {int res 0;for(int i 1; i < 2021; i ){int b i;while(b){if (b % 10 2) res ;b / 10;}}cout << res; return 0; }...
leetcode(2)栈
leetcode 155 最小栈 stack相当于栈,先进后出 存储全部栈元素 [-3,2,-1] min_stack,存储栈当前位置最小的元素 [-3,-3,-3] class MinStack:def __init__(self):self.stack []self.min_stack [math.inf]def push(self, x: int) :self.stack.append(x)self.min_sta…...
有什么小程序可以下载视频号的视频?
最近有一些朋友问我,【视频号下载助手】和【视频下载bot】小程序,有什么作用? 首先视频号下载助手是协助用户进行下载的,但由于下载要符合平台规定,我们就将视频下载助手与视频下载bot小程序想结合的模式࿰…...
GDB调试简单介绍
最近和许多同事交流时,发现好多人只是在IDE上debug,但是gdb却一点都不了解;校招新来的同事更是都没听过gdb这个工具,所以在培训时给他们培训了一下;另外好久也没写blog了,刚好把这篇笔记简单分享一下。 0 …...
关于opencv的contourArea计算方法
cv::contourArea计算的轮廓面积并不等于轮廓点计数,原因是cv::contourArea是基于Green公式计算 老外的讨论 github 举一个直观的例子,图中有7个像素,橙色为轮廓点连线,按照contourArea的定义,轮廓的面积为橙色所包围…...
《机器学习》第6章 支持向量机
文章目录 6.1 间隔与支持向量6.2 对偶问题6.3 核函数支持向量展式核函数 6.4 软间隔与正则化6.5 支持向量回归6.6 核方法6.7 阅读材料 6.1 间隔与支持向量 分类学习最基本的想法就是基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开.但能将训练样本分开的划分…...
Python学习基础笔记七十七——json序列化
客户端和服务端之间需要交换数据才能完成各种功能。 假设 服务端程序都是用Python语言开发的话,那么 服务端从数据库中获取的最近的交易列表,可能就是像下面这样的一个Python列表对象: historyTransactions [{time : 20170101070311, #…...
【C++】C++11新特性
文章目录 一、C发展简介二、C11简介三、列表初始化1.统一使用{}初始化2.initializer_list类 四、变量的类型推导1.auto2.decltype3.nullptr 五、范围for循环六、STL中一些变化七、final与override八、新的类功能1.新增默认成员函数2.成员变量的缺省值3.default 和 delete4.fina…...
使用 PyAudio、语音识别、pyttsx3 和 SerpApi 构建简单的基于 CLI 的语音助手
德米特里祖布☀️ 一、介绍 正如您从标题中看到的,这是一个演示项目,显示了一个非常基本的语音助手脚本,可以根据 Google 搜索结果在终端中回答您的问题。 您可以在 GitHub 存储库中找到完整代码:dimitryzub/serpapi-demo-project…...
C++11——多线程
目录 一.thread类的简单介绍 二.线程函数参数 三.原子性操作库(atomic) 四.lock_guard与unique_lock 1.lock_guard 2.unique_lock 五.条件变量 一.thread类的简单介绍 在C11之前,涉及到多线程问题,都是和平台相关的,比如windows和linu…...
力扣每日一题48:旋转图像
题目描述: 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1: 输入:matrix [[1,2,3],…...
操作系统——吸烟者问题(王道视频p34、课本ch6)
1.问题分析:这个问题可以看作是 可以生产多种产品的 单生产者-多消费者问题 2.代码——这里就是由于同步信号量的初值都是1,所以没有使用mutex互斥信号, 总共4个同步信号量,其中一个是 finish信号量...
通讯协议学习之路:CAN协议理论
通讯协议之路主要分为两部分,第一部分从理论上面讲解各类协议的通讯原理以及通讯格式,第二部分从具体运用上讲解各类通讯协议的具体应用方法。 后续文章会同时发表在个人博客(jason1016.club)、CSDN;视频会发布在bilibili(UID:399951374) 序、…...
Redis常用配置详解
目录 一、Redis查看当前配置命令二、Redis基本配置三、RDB全量持久化配置(默认开启)四、AOF增量持久化配置五、Redis key过期监听配置六、Redis内存淘汰策略七、总结 一、Redis查看当前配置命令 # Redis查看当前全部配置信息 127.0.0.1:6379> CONFIG…...
卷积神经网络CNN学习笔记-MaxPool2D函数解析
目录 1.函数签名:2.学习中的疑问3.代码 1.函数签名: torch.nn.MaxPool2d(kernel_size, strideNone, padding0, dilation1, return_indicesFalse, ceil_modeFalse) 2.学习中的疑问 Q:使用MaxPool2D池化时,当卷积核移动到某位置,该卷积核覆盖区域超过了输入尺寸时,MaxPool2D会…...
基于图像字典学习的去噪技术研究与实践
图像去噪是计算机视觉领域的一个重要研究方向,其目标是从受到噪声干扰的图像中恢复出干净的原始图像。字典学习是一种常用的图像去噪方法,它通过学习图像的稀疏表示字典,从而实现对图像的去噪处理。本文将详细介绍基于字典学习的图像去噪技术…...
记一次Clickhouse 复制表同步延迟排查
现象 数据从集群中一个节点写入之后,其他两个节点无法及时查询到数据,等了几分钟。因为我们ck集群是读写分离架构,也就是一个节点写数据,其他节点供读取。 排查思路 从业务得知,数据更新时间点为:11:30。…...
Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
【2025年】解决Burpsuite抓不到https包的问题
环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
