当前位置: 首页 > news >正文

华为OD 机智的外卖员(100分)【java】A卷+B卷

华为OD统一考试A卷+B卷 新题库说明
你收到的链接上面会标注A卷还是B卷。目前大部分收到的都是B卷。
B卷对应20022部分考题以及新出的题目,A卷对应的是新出的题目。
我将持续更新最新题目

获取更多免费题目可前往夸克网盘下载,请点击以下链接进入:

我用夸克网盘分享了「华为OD题库Java(精选50题).zip」,点击链接即可转存。
链接:https://pan.quark.cn/s/f1a7e6aec5ac

题目类型:动态规划
题目描述:
外卖员每天在大厦中送外卖,大厦共有L层(0<L<=10^5),当他处于第N层楼时,可以每分钟通过步行梯向上达到N+1层,或向下达到N-1层,或者乘坐电梯达到2*N层。给定他所处位置N,以及外卖配送的目的楼层M,计算他送达的最短时间。

输入描述
当前所处楼层N和外卖配送的目的楼层M

输出描述
送达的最短时间

样例
输入
5 17

输出
4

思路分析
这道题是一道动态规划问题,dp[i]表示到达第i层的最短时间。

初始化的时候,到N层以下需要的时间,都减去相应的楼层,即步行向下

相关文章:

华为OD 机智的外卖员(100分)【java】A卷+B卷

华为OD统一考试A卷+B卷 新题库说明 你收到的链接上面会标注A卷还是B卷。目前大部分收到的都是B卷。 B卷对应20022部分考题以及新出的题目,A卷对应的是新出的题目。 我将持续更新最新题目 获取更多免费题目可前往夸克网盘下载,请点击以下链接进入: 我用夸克网盘分享了「华为O…...

Node编写用户登录接口

目录 前言 服务器 编写登录接口API 使用sql语句查询数据库中是否有该用户 判断密码是否正确 生成JWT的Token字符串 配置解析token的中间件 配置捕获错误中间件 完整的登录接口代码 前言 本文介绍如何使用node编写登录接口以及解密生成token&#xff0c;如何编写注册接…...

vlookup函数踩坑(wps)

使用wps的朋友看过来 vlookup函数踩坑&#xff0c;vlookup&#xff08;查找值&#xff0c;查找范围&#xff0c;返回值的索引&#xff0c;精确查找or模糊查找&#xff09; 我们要查找的数据的那一列&#xff0c;必须是查找范围的第一列&#xff01; 案例&#xff0c;看下面的…...

老卫带你学---leetcode刷题(8. 字符串转换整数 (atoi))

8. 字符串转换整数 (atoi) 问题&#xff1a; 请你来实现一个 myAtoi(string s) 函数&#xff0c;使其能将字符串转换成一个 32 位有符号整数&#xff08;类似 C/C 中的 atoi 函数&#xff09;。 函数 myAtoi(string s) 的算法如下&#xff1a; 读入字符串并丢弃无用的前导空…...

了解事件冒泡

事件冒泡是指在网页中&#xff0c;当某个元素触发了一个事件时&#xff0c;这个事件会逐级向上传播到它的父元素&#xff0c;直至达到文档树的根节点。这种传播方式被称为事件冒泡。 为什么会有事件冒泡&#xff1f; 事件冒泡是为了方便处理多个嵌套元素的事件而引入的机制。…...

线性代数1:线性方程和系统

Digital Collection (staedelmuseum.de) 图片来自施泰德博物馆 一、前言 通过这些文章&#xff0c;我希望巩固我对这些基本概念的理解&#xff0c;同时如果可能的话&#xff0c;通过我希望成为一种基于直觉的数学学习方法为其他人提供额外的清晰度。如果有任何错误或机会需要我…...

“第四十八天” 计算机组成原理

数据结构学完了&#xff0c;不过也就是匆匆过了一遍&#xff0c;后面肯定还是要重来的。现在开始学机组了。 计算机发展历程&#xff1a; 计算机硬件唯一能识别的数据是二进制的 0/1&#xff0c;而在计算机中用低/高电平表示 0 / 1&#xff0c;也就是通过电信号传递数据&#x…...

【算法|贪心算法系列No.4】leetcode55. 跳跃游戏 45. 跳跃游戏 II

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…...

第九章 JDBC

文章目录 一. 单选题&#xff08;共5题&#xff0c;50分&#xff09;二. 判断题&#xff08;共5题&#xff0c;50分&#xff09; 一. 单选题&#xff08;共5题&#xff0c;50分&#xff09; (单选题) 下列选项&#xff0c;可用于存储结果集的对象是&#xff08;&#xff09; A.…...

Kubernetes基础概念及架构和组件

目录 一、kubernetes简介 1、kubernetes的介绍与作用 2、为什么要用K8S&#xff1f; 二、kubernetes特性 1、自我修复 2、弹性伸缩 3、服务发现和负载均衡 4、自动发布&#xff08;滚动发布/更新&#xff09;和回滚 5、集中化配置管理和密钥管理 6、存储编排 7、任务批…...

04.Finetune vs. Prompt

目录 语言模型回顾大模型的两种路线专才通才二者的比较 专才养成记通才养成记Instruction LearningIn-context Learning 自动Prompt 部分截图来自原课程视频《2023李宏毅最新生成式AI教程》&#xff0c;B站自行搜索 语言模型回顾 GPT&#xff1a;文字接龙 How are __. Bert&a…...

UG NX二次开发(C#)-采用NXOpen完成对象的合并操作

文章目录 1、前言2、Ufun实现布尔和操作的函数2.1 函数说明2.2 源代码3、采用NXOpen实现布尔和操作的函数3.1 函数说明3.2 源代码4、测试结果4.1 采用UFun 与NXOpen的结果4.2采用UFun 与NXOpen的对比说明1、前言 在UG NX中开发过程中,创建特征对象的时候往往会用到布尔操作,…...

测开不得不会的python之re模块正则表达式匹配

学习目录 正则表达式介绍 正则表达式的常用符号 python的re模块 findall()函数 finditer()函数 match()函数 search()函数 split()函数 正则表达式的介绍 Python 通过标准库中的 re 模块来支持正则表达式。 正则表达式作为高级的文本模式匹配、抽取、和搜索。简单地说…...

selenium4 元素定位

selenium4 9种元素定位 ID driver.find_element(By.ID,"kw")NAME driver.find_element(By.NAME,"tj_settingicon")CLASS_NAME driver.find_element(By.CLASS_NAME,"ipt_rec")TAG_NAME driver.find_element(By.TAG_NAME,"area")LINK_T…...

sql高级教程-索引

文章目录 架构简介1.连接层2.服务层3.引擎层4.存储层 索引优化背景目的劣势分类基本语法索引结构和适用场景 性能分析MySq| Query Optimizerexplain 索引优化单表优化两表优化三表优化 索引失效原因 架构简介 1.连接层 最上层是一些客户端和连接服务&#xff0c;包含本地sock通…...

拼团小程序制作技巧大揭秘:零基础也能轻松掌握

随着拼团模式的日益流行&#xff0c;越来越多的商家和消费者开始关注拼团小程序的制作。对于没有技术背景的普通人来说&#xff0c;制作一个拼团小程序似乎是一项艰巨的任务。但实际上&#xff0c;选择一个简单易用的第三方平台或工具&#xff0c;可以轻松完成拼团小程序的制作…...

报错:The supplied javaHome seems to be invalid. I cannot find the java executable

AS 升级遇到的问题 问题 升级 Android Studio&#xff0c;碰到无法检测到 java The supplied javaHome seems to be invalid. I cannot find the java executable. Tried location: D:\Program Files\Android\Android Studio\jre\bin\java.exe 然后去网上找解决思路。 终于…...

关于 硬盘

关于 硬盘 1. 机械硬盘1.1 基本概念1.2 工作原理1.3 寻址方式1.4 磁盘磁记录方式 2. 固态硬盘2.1 基本概念2.2 工作原理 1. 机械硬盘 1.1 基本概念 机械硬盘即是传统普通硬盘&#xff0c;硬盘的物理结构一般由磁头与盘片、电动机、主控芯片与排线等部件组成。 所有的数据都是…...

Java反射实体组装SQL

之前在LIS.Core定义了实体特性&#xff0c;在LIS.Model给实体类加了表特性&#xff0c;属性特性&#xff0c;外键特性等。ORM要实现增删改查和查带外键的父表信息就需要解析Model的特性和实体信息组装SQL来供数据库驱动实现增删改查功能。 实现实体得到SQL的工具类&#xff0c…...

tensorrt安装使用教程

一般的深度学习项目&#xff0c;训练时为了加快速度&#xff0c;会使用多GPU分布式训练。但在部署推理时&#xff0c;为了降低成本&#xff0c;往往使用单个GPU机器甚至嵌入式平台&#xff08;比如 NVIDIA Jetson&#xff09;进行部署&#xff0c;部署端也要有与训练时相同的深…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

React Native 导航系统实战(React Navigation)

导航系统实战&#xff08;React Navigation&#xff09; React Navigation 是 React Native 应用中最常用的导航库之一&#xff0c;它提供了多种导航模式&#xff0c;如堆栈导航&#xff08;Stack Navigator&#xff09;、标签导航&#xff08;Tab Navigator&#xff09;和抽屉…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...