当前位置: 首页 > news >正文

pytorch 入门 (四)案例二:人脸表情识别-VGG16实现

实战教案二:人脸表情识别-VGG16实现

本文为🔗小白入门Pytorch内部限免文章
参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可

  • 🍨 本文为🔗小白入门Pytorch中的学习记录博客
  • 🍦 参考文章:【小白入门Pytorch】人脸表情识别-VGG16实现
  • 🍖 原作者:K同学啊

数据集下载:
链接:https://pan.baidu.com/s/1RvlpOx8v6MudY65Oi78-kQ?pwd=zhfo
提取码:zhfo
–来自百度网盘超级会员V4的分享

目录

  • 实战教案二:人脸表情识别-VGG16实现
    • 一、导入数据
    • 二、VGG-16算法模型
      • 1. 优化器与损失函数
      • 2. 模型的训练
    • 三、可视化

一、导入数据

from torchvision.datasets   import CIFAR10 # CIFAR10是一个用于计算机视觉的经典数据集,其中包含60000张32x32的彩色图像,分为10个类别,每个类别有6000张图像。
from torchvision.transforms import transforms # 这是一个常用的模块,用于图像的预处理和增强。
from torch.utils.data       import DataLoader # 可以将数据集转化为迭代器的工具,方便在训练循环中加载数据。
from torchvision            import datasets # 导入了torchvision下的所有数据集,但实际上这与前面导入CIFAR10是重复的,可能是不必要的。
from torch.optim            import Adam # 导入了Adam优化器。Adam是一个常用的、表现良好的深度学习优化器。
import torchvision.models   as models # 这个模块提供了各种预训练模型,例如ResNet、VGG、DenseNet等。
import torch.nn.functional  as F # 提供了各种激活函数、损失函数和其他的功能函数。
import torch.nn             as nn # 这个模块提供了构建神经网络所需的各种工具,如层、损失函数等。
import torch,torchvision # torch是PyTorch的核心库,提供了基础的张量操作;torchvision则是与计算机视觉相关的库,提供了数据集、预处理方法和预训练模型。
train_datadir = '/home/mw/input/kzb324321357/2-Emotion_Images/2-Emotion_Images/train'
test_datadir  = '/home/mw/input/kzb324321357/2-Emotion_Images/2-Emotion_Images/test'train_transforms = transforms.Compose([transforms.Resize([48, 48]),    # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transforms = transforms.Compose([transforms.Resize([48, 48]),    # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])# 使用 datasets.ImageFolder 加载训练数据集和测试数据集
# ImageFolder假定所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类别的名字。
# 同时,为加载的数据应用了之前定义的预处理流程。
train_data = datasets.ImageFolder(train_datadir, transform=train_transforms)
test_data = datasets.ImageFolder(test_datadir, transform=test_transforms)

torch.utils.data.DataLoader详解

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

函数原型:

torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)

参数说明:

  • dataset(string) :加载的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1)
  • shuffle(bool,optional) : 如果为True,每个epoch重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 len 的 Iterable。 如果指定,则不得指定 shuffle 。
  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
  • num_workers(int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last(bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
  • timeout(numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn(callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。 (默认:None)
# 创建训练数据加载器(data loader),用于将数据分成小批次进行训练
train_loader = torch.utils.data.DataLoader(train_data,batch_size=16,      # 每个批次包含的图像数量shuffle=True,       # 随机打乱数据num_workers=4)      # 使用多少个子进程来加载数据# 创建测试数据加载器(data loader),用于将测试数据分成小批次进行测试
test_loader = torch.utils.data.DataLoader(test_data,batch_size=16,      # 每个批次包含的图像数量shuffle=True,       # 随机打乱数据num_workers=4)      # 使用多少个子进程来加载数据# 打印数据集的信息
# 请注意,这里使用len(train_loader) * 16来计算图像总数是基于批次大小为16的假设。
# 实际上,最后一个批次的图像数量可能少于16。
print("The number of images in a training set is: ", len(train_loader) * 16)  # 计算训练集中的图像总数
print("The number of images in a test set is: ", len(test_loader) * 16)      # 计算测试集中的图像总数
print("The number of batches per epoch is: ", len(train_loader))             # 计算每个 epoch 中的批次数# 定义数据集的类别标签
classes = ('Angry', 'Fear', 'Happy', 'Surprise')
The number of images in a training set is:  18480
The number of images in a test set is:  2320
The number of batches per epoch is:  1155

二、VGG-16算法模型

device = "cuda" if torch.cuda.is_available() else "cpu"print("Using {} device".format(device))# 直接调用官方封装好的VGG16模型
model = models.vgg16(pretrained = True)
model
Using cuda device

Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /home/mw/.cache/torch/hub/checkpoints/vgg16-397923af.pth

HBox(children=(FloatProgress(value=0.0, max=553433881.0), HTML(value='')))

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace=True)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)(6): Linear(in_features=4096, out_features=1000, bias=True))
)

1. 优化器与损失函数

optimizer = Adam(model.parameters(),lr = 0.0001,weight_decay = 0.0001)
loss_model = nn.CrossEntropyLoss()
import torch
from torch.autograd import Variable
# 定义训练函数
def train(model,train_loader,loss_model,optimizer):# 将模型移动到指定设备(如:GPU)model = model.to(device)# 将模型设置为训练模式(启用梯度计算)model.train()for i,(images,labels) in enumerate(train_loader,0):# 将输入数据和标签移动到指定设备images = Variable(images.to(device))labels = Variable(labels.to(device))# 梯度清零optimizer.zero_grad()# 前向传播得到模型输出outputs = model(images)# 计算损失loss = loss_model(outputs,labels)# 反向传播loss.backward()# 更新模型参数optimizer.step()# 每隔1000个批次输出一次损失if i%1000 == 0:print('[%5d] loss: %.3f' % (i,loss))# 定义测试函数
def test(model,test_loader,loss_model):# 获取测试数据集大小size = len(test_loader.dataset)# 获取测试数据批次数num_batches = len(test_loader)# 将模型设置为评估模式(不进行梯度计算)model.eval()test_loss,correct = 0,0# 在不计算梯度的上下文中执行测试with torch.no_grad():for X,y in test_loader:X,y = X.to(device),y.to(device)# 使用模型进行前向传播得到预测pred = model(X)# 计算损失值,并将其累积到test_loss中test_loss += loss_model(pred,y).item()# 计算正确预测的数量correct += (pred.argmax(1)==y).type(torch.float).sum().item()# 计算平均测试损失和准确率test_loss /= num_batchescorrect /= sizeprint(f"Test Error:\n Accuracy:{(100*correct):>0.1f}%,Avg loss:{test_loss:>8f} \n")return correct,test_loss

提问:梯度清零有三种放置方法吗,放到循环最前面或者最后面,或者反向传播之前

是的,您理解得很准确。在PyTorch中,optimizer.zero_grad()的位置有一定的灵活性。以下是这三种常见的放置方法:

  1. 循环开始时:在每次迭代的最开始,即前向传播之前,清零梯度。
  2. 反向传播之前:在前向传播之后、反向传播之前,清零梯度。这也是您提供的代码中使用的方法。
  3. 循环结束时:在每次迭代的最后,即更新参数之后,清零梯度。

这三种方法在大多数情况下都是等效的,因为关键是确保在进行下一次反向传播之前梯度是清零的。

但是,如果您在一个迭代中进行多次反向传播(例如,当您想要累加梯度时),那么您必须在每次反向传播之前清零梯度。在这种特定情境中,第二种方法(反向传播之前)是最合适的。

对于大多数常规的训练循环,选择哪种方法主要是根据个人偏好或代码的可读性来决定的。

2. 模型的训练

# 创建一个空列表用于存储每个epoch的测试集准确率
test_acc_list = []
# 定义训练的总论数
epochs = 10# 开始训练循环,每个epoch 都会执行一下操作
for t in range(epochs):print(f"Epoch {t+1}\n-------------------------------")# 在训练数据上训练模型train(model,train_loader,loss_model,optimizer)# 在测试数据集上测试模型的性能,并获取测试准确率和测试损失test_acc,test_loss = test(model,test_loader,loss_model)# 将测试准确率添加到列表中,以便后续分析test_acc_list.append(test_acc)# 所有epoch完成后打印完成消息
print("Done!")
Epoch 1
-------------------------------
[    0] loss: 0.129
[ 1000] loss: 0.005
Test Error:Accuracy:77.4%,Avg loss:1.069592 Epoch 2
-------------------------------
[    0] loss: 0.028
[ 1000] loss: 0.055
Test Error:Accuracy:78.7%,Avg loss:0.976879 Epoch 3
-------------------------------
[    0] loss: 0.033
[ 1000] loss: 0.050
Test Error:Accuracy:77.9%,Avg loss:1.202651 Epoch 4
-------------------------------
[    0] loss: 0.051
[ 1000] loss: 0.356
Test Error:Accuracy:79.0%,Avg loss:1.080943 Epoch 5
-------------------------------
[    0] loss: 0.001
[ 1000] loss: 0.183
Test Error:Accuracy:78.7%,Avg loss:1.248081 Epoch 6
-------------------------------
[    0] loss: 0.003
[ 1000] loss: 0.127
Test Error:Accuracy:78.4%,Avg loss:1.129110 Epoch 7
-------------------------------
[    0] loss: 0.003
[ 1000] loss: 0.076
Test Error:Accuracy:77.6%,Avg loss:1.200314 Epoch 8
-------------------------------
[    0] loss: 0.042
[ 1000] loss: 0.071
Test Error:Accuracy:78.0%,Avg loss:1.149877 Epoch 9
-------------------------------
[    0] loss: 0.002
[ 1000] loss: 0.212
Test Error:Accuracy:78.0%,Avg loss:1.353625 Epoch 10
-------------------------------
[    0] loss: 0.001
[ 1000] loss: 0.001
Test Error:Accuracy:78.5%,Avg loss:1.249242 Done!
test_acc_list
[0.773552290406223,0.7869490060501296,0.7791702679343129,0.7904062229904927,0.7869490060501296,0.783923941227312,0.7757130509939498,0.780466724286949,0.780466724286949,0.7852203975799481]

三、可视化

import numpy as np
import matplotlib.pyplot as pltx = [i for i in range(1,11)]plt.plot(x,test_acc_list,label="line ACC",alpha = 0.8)plt.xlabel("epoch")
plt.ylabel("acc")plt.legend()
plt.show()

相关文章:

pytorch 入门 (四)案例二:人脸表情识别-VGG16实现

实战教案二:人脸表情识别-VGG16实现 本文为🔗小白入门Pytorch内部限免文章 参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可 🍨 本文为🔗小白入门Pytorch中的学习记录博客🍦 参…...

数据结构--线性表回顾

目录 线性表 1.定义 2.线性表的基本操作 3.顺序表的定义 3.1顺序表的实现--静态分配 3.2顺序表的实现--动态分配 4顺序表的插入、删除 4.1插入操作的时间复杂度 4.2顺序表的删除操作-时间复杂度 5 顺序表的查找 5.1按位查找 5.2 动态分配的方式 5.3按位查找的时间…...

ChatGPT(1):ChatGPT初识

1 ChatGPT原理 ChatGPT 是基于 GPT-3.5 架构的一个大型语言模型,它的工作原理涵盖了深度学习和自然语言处理技术。以下是 ChatGPT 的工作原理的一些关键要点: 神经网络架构:ChatGPT 的核心是一个深度神经网络,采用了变种的 Tran…...

PostgreSQL 插件 CREATE EXTENSION 原理

PostgreSQL 提供了丰富的数据库内核编程接口,允许开发者在不修改任何 Postgres 核心代码的情况下以插件的形式将自己的代码融入内核,扩展数据库功能。本文探究了 PostgreSQL 插件的一般源码组成,梳理插件的源码内容和实现方式;并介…...

Android常见分区

一、Google官方标准分区 1. Boot分区 包含Linux内核和一个最小的root文件系统(装载到ramdisk中),用于挂载系统和其他的分区并开始Runtime。正如名字所代表的意思(注:boot的意思是启动),这个分区使Android设备可以启动…...

华为鸿蒙4谷歌GMS安装教学

目录 问题描述 参考视频 教学视频1 配套文档 教学视频2 资源包(配套视频1) 设备未经 play 保护机制认证 问题描述 很多国外的最新应用需要再Google商店才能下载比如ChatGPT 华为手机不支持 Google Play 服务的原因主要是由于谷歌服务框架(GMS)未…...

原型设计工具:Balsamiq Wireframes 4.7.4 Crack

原型设计工具:Balsamiq Wireframes是一种快速的低保真UI 线框图工具,可重现在记事本或白板上绘制草图但使用计算机的体验。 它确实迫使您专注于结构和内容,避免在此过程后期对颜色和细节进行冗长的讨论。 线框速度很快:您将产生更多想法&am…...

Nginx Proxy代理

代理原理 反向代理产生的背景: 在计算机世界里,由于单个服务器的处理客户端(用户)请求能力有一个极限,当用户的接入请求蜂拥而入时,会造成服务器忙不过来的局面,可以使用多个服务器来共同分担成…...

SparkSQL之LogicalPlan概述

逻辑计划阶段在整个流程中起着承前启后的作用。在此阶段,字符串形态的SQL语句转换为树结构形态的逻辑算子树,SQL中所包含的各种处理逻辑(过滤、剪裁等)和数据信息都会被整合在逻辑算子树的不同节点中。逻辑计划本质上是一种中间过…...

Ubuntu 安装 kubectl、kubeadm 和 kubelet

你需要在每台机器上安装以下的软件包: kubeadm:用来初始化集群的指令。 kubelet:在集群中的每个节点上用来启动 Pod 和容器等。 kubectl:用来与集群通信的命令行工具。 kubeadm 不能帮你安装或者管理 kubelet 或 kubectl&#…...

C语言获取文件长度

C语言获取文件长度 文章目录 C语言获取文件长度一、使用标准库方法二、使用Linux系统调用 一、使用标准库方法 #include <stdio.h>long get_file_size(const char * filename ){long size 0;FILE * fp fopen(filename,"rb");if( fp NULL ) {printf("o…...

【面试经典150 | 哈希表】快乐数

文章目录 写在前面Tag题目来源题目解读解题思路方法一&#xff1a;哈希集合判重方法二&#xff1a;快慢指针判重 其他语言python3 写在最后 写在前面 本专栏专注于分析与讲解【面试经典150】算法&#xff0c;两到三天更新一篇文章&#xff0c;欢迎催更…… 专栏内容以分析题目为…...

ETL实现实时文件监听

一、实时文件监听的作用及应用场景 实时文件监听是一种监测指定目录下的文件变化的技术&#xff0c;当产生新文件或者文件被修改时&#xff0c;可实时提醒用户并进行相应处理。这种技术广泛应用于数据备份、日志管理、文件同步和版本控制等场景&#xff0c;它可以帮助用户及时…...

Openssl数据安全传输平台003:Protobuf - 部署

文章目录 Github代码仓库位置一、Windows环境配置生成库文件之后—>参考3.3 配置VS1. 先将平台设置为所有平台2. 配置属性 >> C/C >> 常规 >> 附加包含目录3. 配置属性 >> C/C >> 预处理器 >> 预处理器定义,添加4. 配置属性 >> C…...

Proteus仿真--一种智能频率计的设计与制作(AVR单片机+proteus仿真)

本文介绍一种基于AVR单片机实现的一种智能频率计Proteus仿真实现&#xff08;完整仿真源文件及代码见文末链接&#xff09; 简介 硬件电路主要分为单片机主控模块、频率计模块、LCD1602液晶显示模块以及串口模块 &#xff08;1&#xff09;单片机主控模块&#xff1a;单片机…...

CAS是“Compare and Swap“(比较并交换)

CAS是"Compare and Swap"&#xff08;比较并交换&#xff09; 一&#xff0c;介绍 CAS是"Compare and Swap"&#xff08;比较并交换&#xff09;的缩写&#xff0c;是一种多线程同步的原子操作。它基于硬件的原子性保证&#xff0c;用于解决并发环境下的…...

前端数据可视化之【series、series饼图配置】配置项

目录 &#x1f31f;Echarts配置项&#x1f31f;series&#x1f31f;饼图 type:pie&#x1f31f;写在最后 &#x1f31f;Echarts配置项 ECharts开源来自百度商业前端数据可视化团队&#xff0c;基于html5 Canvas&#xff0c;是一个纯Javascript图表库&#xff0c;提供直观&…...

03.MySQL事务及存储引擎笔记

事务 查看/设置事务 select autocommit; --查看当前数据库的事务状态&#xff0c;1表示开启&#xff0c;0表示关闭 set autocommit 0; --关闭自动事务提交采用关闭自动事务提交我们就可以手动进行事务提交&#xff0c;但是这种设置方式是对整个数据库起作用&#xff0c;一些可…...

input框输入中文时,输入未完成触发事件。Vue中文输入法不触发input事件?

前言 在做搜索输入框时&#xff0c;产品期待实时搜索&#xff0c;就是边输入边搜索&#xff0c;然而对于中文输入法出现的效果&#xff0c;不同的产品可能有不同的意见&#xff0c;有的觉得输入未完成也应该触发搜索。但有的却认为应该在中文输入完成后再触发搜索。我发现在vu…...

ArmSoM-RK3588编解码之mpp解码demo解析:mpi_dec_test

1. 简介 [RK3588从入门到精通] 专栏总目录 mpi_dec_test 是rockchip官方解码 demo 本篇文章进行mpi_dec_test 的代码解析&#xff0c;解码流程解析 2. 环境介绍 硬件环境&#xff1a; ArmSoM-W3 RK3588开发板 软件版本&#xff1a; OS&#xff1a;ArmSoM-W3 Debian11 3.…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文通过代码驱动的方式&#xff0c;系统讲解PyTorch核心概念和实战技巧&#xff0c;涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...

大数据驱动企业决策智能化的路径与实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;慌ZHANG-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 一、引言&#xff1a;数据驱动的企业竞争力重构 在这个瞬息万变的商业时代&#xff0c;“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...