当前位置: 首页 > news >正文

ilr normalize isometric log-ratio transformation

visium_heart/st_snRNAseq/05_colocalization/create_niches_ct.R at 5b30c7e497e06688a8448afd8d069d2fa70ebcd2 · saezlab/visium_heart (github.com) 更多内容,关注微信:生信小博士

The ILR (Isometric Log-Ratio) transformation is used in the analysis of compositional data. Any given observation is a set of positive values summing to unity, such as the proportions of chemicals in a mixture or proportions of total time spent in various activities. The sum-to-unity invariant implies that although there may be k≥2�≥2 components to each observation, there are only k−1�−1 functionally independent values. (Geometrically, the observations lie on a k−1�−1-dimensional simplex in k�-dimensional Euclidean space Rk��. This simplicial nature is manifest in the triangular shapes of the scatterplots of simulated data shown below.)

Typically, the distributions of the components become "nicer" when log transformed. This transformation can be scaled by dividing all values in an observation by their geometric mean before taking the logs.

ilr数据输入要求:

 baseILR <- ilrBase(x = integrated_compositions,method = "basic")head(  baseILR)cell_ilr <- as.matrix(ilr(integrated_compositions, baseILR))colnames(cell_ilr) <- paste0("ILR_", 1:ncol(cell_ilr))print(head(cell_ilr)[,1:9])

 

 umap图

comp_umap <- umap(cell_ilr, n_neighbors = 30, n_epochs = 1000) %>%as.data.frame() %>%mutate(row_id = rownames(cell_ilr))head(atlas_meta)comp_umap %>%left_join(atlas_meta, by = c("row_id")) %>%ggplot(aes(x = V1, y = V2, color = opt_clust_integrated)) +ggrastr::geom_point_rast(size = 0.3) +theme_classic() +xlab("UMAP1") +ylab("UMAP2")+theme(legend.text = element_text(size = 14))

 
comp_umap %>%
  left_join(atlas_meta, by = c("row_id")) %>%
  ggplot(aes(x = V1, y = V2, 
             color = orig.ident)) +
  ggrastr::geom_point_rast(size = 0.3) +
  theme_classic() +
  xlab("UMAP1") +
  ylab("UMAP2")+
  
  theme(legend.text = element_text(size = 14))

相关文章:

ilr normalize isometric log-ratio transformation

visium_heart/st_snRNAseq/05_colocalization/create_niches_ct.R at 5b30c7e497e06688a8448afd8d069d2fa70ebcd2 saezlab/visium_heart (github.com) 更多内容&#xff0c;关注微信&#xff1a;生信小博士 The ILR (Isometric Log-Ratio) transformation is used in the anal…...

el表单的简单查询方法

预期效果 实现表单页面根据groupid 、type 、errortype进行数据过滤 实现 第一步&#xff0c;在页面中添加输入或者是下拉框&#xff0c;并且用相应的v-model进行绑定 <div style"display: flex;flex-direction: row;"><el-input style"width: auto…...

【USRP】通信总的分支有哪些

概述 通信是一个广泛的领域&#xff0c;涵盖了许多不同的技术、应用和专业分支。以下是通信领域的一些主要分支&#xff1a; 有线通信&#xff1a;这涉及到利用物理媒介&#xff08;如电缆、光纤&#xff09;进行通信。 电信&#xff1a;包括电话、电报和传真服务。宽带&#…...

关于服务器网络代理解决方案(1024)

方法一、nginx代理 配置代理服务器 在能够访问外网的服务器上&#xff0c;安装和配置 Nginx。你可以使用包管理器来安装 Nginx&#xff0c;例如&#xff1a; csharpCopy codesudo apt-get install nginx # 对于基于 Debian/Ubuntu 的系统 sudo yum install nginx # 对于基于 C…...

Linux下 /etc/shadow内容详解

/etc/shadow 文件&#xff0c;用于存储 Linux 系统中用户的密码信息&#xff0c;又称为“影子文件”。 前面介绍了 /etc/passwd 文件&#xff0c;由于该文件允许所有用户读取&#xff0c;易导致用户密码泄露&#xff0c;因此 Linux 系统将用户的密码信息从 /etc/passwd 文件中…...

Go学习第二章——变量与数据类型

Go变量与数据类型 1 变量1.1 变量概念1.2 变量的使用步骤1.3 变量的注意事项1.4 ""的使用 2 数据类型介绍3 整数类型3.1 有符号整数类型3.2 无符号整数类型3.3 其他整数类型3.4 整型的使用细节 4 小数类型/浮点型4.1 浮点型的分类4.2 简单使用 5 字符类型5.1 字符类型…...

【剑指Offer】:循环有序列表的插入(涉及链表的知识)

给定循环单调非递减列表中的一个点&#xff0c;写一个函数向这个列表中插入一个新元素 insertVal &#xff0c;使这个列表仍然是循环升序的 给定的可以是这个列表中任意一个顶点的指针&#xff0c;并不一定是这个列表中最小元素的指针 如果有多个满足条件的插入位置&#xff0c…...

【Django 04】Django-DRF(ModelViewSet)

DRF是什么&#xff1f; ModelViewSet 是 Django REST framework 提供的一个视图集类&#xff0c;它封装了常见的模型操作方法。 模型类提供了默认的增删改查功能。 它继承自 GenericViewSet、ListModelMixin、RetrieveModelMixin、CreateModelMixin、UpdateModelMixin、Dest…...

ubuntu命令

一、 防火墙命令 1、安装防火墙 sudo sudo apt-get install ufw2、查看防火墙状态 sudo ufw status# 返回结果 # Status: inactive # 表示没有开启防火墙3、开启防火墙 sudo ufw enable# 返回结果 # Command may disrupt existing ssh connections. Proceed with operation…...

C++学习之强制类型转换

强制类型转换运算符 带着三个疑问阅读&#xff1a; 出现的背景是什么&#xff1f;何时使用&#xff1f;如何使用&#xff1f; MSDN . 强制转换运算符 C中的四种强制类型转换符详解 static_cast (1) 使用场景 在基本数据类型之间转换&#xff0c;如把 int 转换为 char&#…...

在Linux中,可以使用以下命令来查看进程

在Linux中&#xff0c;可以使用以下命令来查看进程&#xff1a; ps 命令&#xff1a;显示当前用户的进程状态。 ps&#xff1a;显示当前终端会话中正在运行的进程。ps aux&#xff1a;显示系统中所有正在运行的进程&#xff0c;包括其他用户的进程。ps -ef&#xff1a;显示系统…...

【算法训练-动态规划 一】【应用DP问题】零钱兑换、爬楼梯、买卖股票的最佳时机I、打家劫舍

废话不多说&#xff0c;喊一句号子鼓励自己&#xff1a;程序员永不失业&#xff0c;程序员走向架构&#xff01;本篇Blog的主题是【动态规划】&#xff0c;使用【数组】这个基本的数据结构来实现&#xff0c;这个高频题的站点是&#xff1a;CodeTop&#xff0c;筛选条件为&…...

2023年中职组“网络安全”赛项云南省竞赛任务书

2023年中职组“网络安全”赛项 云南省竞赛任务书 一、竞赛时间 总计&#xff1a;360分钟 竞赛阶段 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 A模块 A-1 登录安全加固 180分钟 200分 A-2 本地安全策略配置 A-3 流量完整性保护 A-4 事件监控 A-5 服务加固…...

Modeling Deep Learning Accelerator Enabled GPUs

Modeling Deep Learning Accelerator Enabled GPUs 发表在 ISPASS 2019 上。文章研究了 NVIDIA 的 Volta 和 Turing 架构中张量核的设计&#xff0c;并提出了 Volta 中张量核的架构模型。 基于 GPGPU-Sim 实现该模型&#xff0c;并且支持 CUTLASS 运行。发现其性能与硬件非常吻…...

《动手学深度学习 Pytorch版》 9.5 机器翻译与数据集

机器翻译&#xff08;machine translation&#xff09;指的是将序列从一种语言自动翻译成另一种语言&#xff0c;基于神经网络的方法通常被称为神经机器翻译&#xff08;neural machine translation&#xff09;。 import os import torch from d2l import torch as d2l9.5.1 …...

网络入门基础

网络入门基础 文章目录 网络入门基础网络的发展协议的概念网络协议初识协议分层层状结构OSI七层模型TCP/IP五层(或四层)模型TCP/IP模型和计算机软硬体系结构的关系 网络传输基本流程同局域网的两台主机通信不同局域网的两台主机通信 网络中的地址管理认识IP地址认识MAC地址 网络…...

Towards a Rigorous Evaluation of Time-series Anomaly Detection(论文翻译)

1 Introduction 随着工业4.0加速系统自动化&#xff0c;系统故障的后果可能会产生重大的社会影响&#xff08;Baheti和Gill 2011; Lee 2008; Lee&#xff0c;Bagheri和Kao 2015&#xff09;。为了防止这种故障&#xff0c;检测系统的异常状态比以往任何时候都更加重要&#xff…...

理解Python装饰器

本文将从多个方面对Python装饰器进行详细的阐述&#xff0c;并给出完整的代码示例。 一、装饰器的概念 装饰器是Python中非常重要的概念&#xff0c;它可以在不修改函数本身的情况下对函数的功能进行扩展或修改。装饰器本质上是一个函数&#xff0c;它接收一个函数作为参数&a…...

VR智慧景区,为游客开启智慧旅游新时代

近年来&#xff0c;文旅部加强了5G、VR虚拟技术等在文旅产业行业的运用&#xff0c;随着科技的不断发展&#xff0c;VR技术的运用越来越广泛&#xff0c;VR智慧景区作为一种全新的旅游方式&#xff0c;也渐渐的受到了人们广泛的关注&#xff0c;它可以让人们足不出户就欣赏到各…...

蓝桥杯 Java 青蛙过河

import java.util.Scanner; // 1:无需package // 2: 类名必须Main, 不可修改/**二分法从大&#xff08;n&#xff09;到小找足够小的步长前缀和记录每个位置的前面有的总石头数&#xff08;一个石头表示可以容纳一个青蛙&#xff0c;一位置有多少个石头hi就是多少&#xff09;&…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

boost::filesystem::path文件路径使用详解和示例

boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类&#xff0c;封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解&#xff0c;包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...

RKNN开发环境搭建2-RKNN Model Zoo 环境搭建

目录 1.简介2.环境搭建2.1 启动 docker 环境2.2 安装依赖工具2.3 下载 RKNN Model Zoo2.4 RKNN模型转化2.5编译C++1.简介 RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程.   本…...