自然语言处理---RNN、LSTM、GRU模型
RNN模型
RNN模型概述
- RNN(Recurrent Neural Network),中文称作循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。
- RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响。
RNN模型的作用
- 因为RNN结构能够很好利用序列之间的关系,因此针对自然界具有连续性的输入序列,如人类的语言,语音等进行很好的处理,广泛应用于NLP领域的各项任务,如文本分类,情感分析,意图识别,机器翻译等。
- 以一个用户意图识别的例子对RNN的运行过程进行简单的分析:
- 第一步:用户输入了"What time is it ?",首先需要对它进行基本的分词,因为RNN是按照顺序工作的,每次只接收一个单词进行处理。
- 第二步:首先将单词"What"输送给RNN,它将产生一个输出O1。
- 第三步:继续将单词"time"输送给RNN,但此时RNN不仅仅利用"time"来产生输出O2,还会使用来自上一层隐层输出O1作为输入信息。
- 第四步:重复这样的步骤,直到处理完所有的单词。
- 第五步:最后将最终的隐层输出O5进行处理来解析用户意图。
RNN模型的分类
- 从两个角度对RNN模型进行分类,第一个角度是输入和输出的结构,第二个角度是RNN的内部构造。
- 按照输入和输出的结构进行分类:
- N vs N - RNN
- N vs 1 - RNN
- 1 vs N - RNN
- N vs M - RNN
- 按照RNN的内部构造进行分类:
- 传统RNN
- LSTM
- Bi-LSTM
- GRU
- Bi-GRU
- N vs N - RNN
- 它是RNN最基础的结构形式,最大的特点就是:输入和输出序列是等长的。由于这个限制的存在,使其适用范围比较小,可用于生成等长度的合辙诗句。
- N vs 1 - RNN
- 有时要处理的问题输入是一个序列,而要求输出是一个单独的值而不是序列,应该怎样建模呢?只要在最后一个隐层输出h上进行线性变换就可以了,大部分情况下,为了更好的明确结果,还要使用sigmoid或者softmax进行处理。这种结构经常被应用在文本分类问题上。
- 1 vs N - RNN
- 如果输入不是序列而输出为序列的情况怎么处理呢?最常采用的一种方式就是使该输入作用于每次的输出之上。这种结构可用于将图片生成文字任务等。
- N vs M - RNN
- 这是一种不限输入输出长度的RNN结构,它由编码器和解码器两部分组成,两者的内部结构都是某类RNN,它也被称为seq2seq架构。输入数据首先通过编码器,最终输出一个隐含变量c,之后最常用的做法是使用这个隐含变量c作用在解码器进行解码的每一步上,以保证输入信息被有效利用。
- seq2seq架构最早被提出应用于机器翻译,因为其输入输出不受限制,如今也是应用最广的RNN模型结构。在机器翻译,阅读理解,文本摘要等众多领域都进行了非常多的应用实践。
传统RNN模型
RNN结构分析
结构解释图
内部结构分析
- 在中间的方块部分,它的输入有两部分,分别是h(t-1)以及x(t),代表上一时间步的隐层输出,以及此时间步的输入,它们进入RNN结构体后,会"融合"到一起,这种融合根据结构解释可知,是将二者进行拼接,形成新的张量[x(t), h(t-1)],之后这个新的张量将通过一个全连接层(线性层),该层使用tanh作为激活函数,最终得到该时间步的输出h(t),它将作为下一个时间步的输入和x(t+1)一起进入结构体。以此类推。
根据结构分析得出内部计算公式:
激活函数tanh的作用:用于帮助调节流经网络的值,tanh函数将值压缩在-1和1之间。
传统RNN优缺点
传统RNN的优势
- 由于内部结构简单,对计算资源要求低,相比RNN变体:LSTM和GRU模型参数总量少了很多,在短序列任务上性能和效果都表现优异。
传统RNN的缺点
- 传统RNN在解决长序列之间的关联时,通过实践,证明经典RNN表现很差,原因是在进行反向传播的时候,过长的序列导致梯度的计算异常,发生梯度消失或爆炸。
梯度消失或爆炸介绍
- 根据反向传播算法和链式法则,梯度的计算可以简化为以下公式
- 其中sigmoid的导数值域是固定的,在[0, 0.25]之间,而一旦公式中的w也小于1,那么通过这样的公式连乘后,最终的梯度就会变得非常非常小,这种现象称作梯度消失。反之,如果人为的增大w的值,使其大于1,那么连乘够就可能造成梯度过大,称作梯度爆炸。
- 梯度消失或爆炸的危害:
- 如果在训练过程中发生了梯度消失,权重无法被更新,最终导致训练失败;梯度爆炸所带来的梯度过大,大幅度更新网络参数,在极端情况下,结果会溢出(NaN值)。
LSTM模型
LSTM(Long Short-Term Memory)也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象。同时LSTM的结构更复杂,它的核心结构可以分为四个部分去解析:遗忘门、输入门、细胞状态、输出门。
LSTM结构分析
遗忘门
- 遗忘门部分结构图与计算公式
- 遗忘门结构分析
- 与传统RNN的内部结构计算非常相似,首先将当前时间步输入x(t)与上一个时间步隐含状态h(t-1)拼接,得到[x(t), h(t-1)],然后通过一个全连接层做变换,最后通过sigmoid函数进行激活得到f(t)。
- 可以将f(t)看作是门值,好比一扇门开合的大小程度,门值都将作用在通过该扇门的张量,遗忘门门值将作用的上一层的细胞状态上,代表遗忘过去的多少信息, 又因为遗忘门门值是由x(t),h(t-1)计算得来的,因此整个公式意味着根据当前时间步输入和上一个时间步隐含状态h(t-1)来决定遗忘多少上一层的细胞状态所携带的过往信息。
- 激活函数sigmiod的作用:用于帮助调节流经网络的值,sigmoid函数将值压缩在0和1之间。
输入门
- 输入门部分结构图与计算公式
- 输入门结构分析
- 输入门的计算公式有两个,第一个就是产生输入门门值的公式,它和遗忘门公式几乎相同,区别只是在于它们之后要作用的目标上。这个公式意味着输入信息有多少需要进行过滤。输入门的第二个公式是与传统RNN的内部结构计算相同。对于LSTM来讲,它得到的是当前的细胞状态,而不是像经典RNN一样得到的是隐含状态。
细胞状态
- 细胞状态更新图与计算公式
- 细胞状态更新分析
- 细胞更新的结构与计算公式非常容易理解,这里没有全连接层,只是将刚刚得到的遗忘门门值与上一个时间步得到的C(t-1)相乘,再加上输入门门值与当前时间步得到的未更新C(t)相乘的结果。最终得到更新后的C(t)作为下一个时间步输入的一部分。整个细胞状态更新过程就是对遗忘门和输入门的应用。
输出门
- 输出门部分结构图与计算公式
- 输出门结构分析
- 输出门部分的公式也是两个,第一个即是计算输出门的门值,它和遗忘门,输入门计算方式相同。第二个即是使用这个门值产生隐含状态h(t),他将作用在更新后的细胞状态C(t)上,并做tanh激活,最终得到h(t)作为下一时间步输入的一部分。整个输出门的过程,就是为了产生隐含状态h(t)。
Bi-LSTM
Bi-LSTM概述
Bi-LSTM即双向LSTM,它没有改变LSTM本身任何的内部结构,只是将LSTM应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出。
Bi-LSTM结构分析
- 图中对"我爱中国"这句话或者叫这个输入序列,进行了从左到右和从右到左两次LSTM处理,将得到的结果张量进行了拼接作为最终输出。这种结构能够捕捉语言语法中一些特定的前置或后置特征,增强语义关联,但是模型参数和计算复杂度也随之增加了一倍,一般需要对语料和计算资源进行评估后决定是否使用该结构
GRU模型
GRU(Gated Recurrent Unit)也称门控循环单元结构,它也是传统RNN的变体,同LSTM一样能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象。同时它的结构和计算要比LSTM更简单,它的核心结构可以分为两个部分去解析:更新门、重置门。
GRU结构分析
结构解释图
GRU的更新门和重置门结构图
内部结构分析
- 和之前分析过的LSTM中的门控一样,首先计算更新门和重置门的门值,分别是z(t)和r(t),计算方法就是使用X(t)与h(t-1)拼接进行线性变换,再经过sigmoid激活。之后重置门门值作用在了h(t-1)上,代表控制上一时间步传来的信息有多少可以被利用。
- 接着就是使用这个重置后的h(t-1)进行基本的RNN计算,即与x(t)拼接进行线性变化,经过tanh激活,得到新的h(t)。
- 最后更新门的门值会作用在新的h(t),而1-门值会作用在h(t-1)上,随后将两者的结果相加,得到最终的隐含状态输出h(t),这个过程意味着更新门有能力保留之前的结果,当门值趋于1时, 输出就是新的h(t),而当门值趋于0时,输出就是上一时间步的h(t-1)。
Bi-GRU
Bi-GRU与Bi-LSTM的逻辑相同,都是不改变其内部结构,而是将模型应用两次且方向不同,再将两次得到的LSTM结果进行拼接作为最终输出。
GRU优缺点
-
GRU的优势
- GRU和LSTM作用相同,在捕捉长序列语义关联时,能有效抑制梯度消失或爆炸,效果都优于传统RNN且计算复杂度相比LSTM要小。
-
GRU的缺点:
- GRU仍然不能完全解决梯度消失问题,同时其作用RNN的变体,有着RNN结构本身的一大弊端,即不可并行计算,这在数据量和模型体量逐步增大的未来,是RNN发展的关键瓶颈。
相关文章:

自然语言处理---RNN、LSTM、GRU模型
RNN模型 RNN模型概述 RNN(Recurrent Neural Network),中文称作循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。RNN的循环机制使模型隐层上一时间步产生的…...

rust学习——方法 Method
文章目录 方法 Method定义方法self、&self 和 &mut self方法名跟结构体字段名相同 带有多个参数的方法关联函数多个 impl 定义为枚举实现方法 rust 结构体与枚举的区别回答1回答2 方法 Method 从面向对象语言过来的同学对于方法肯定不陌生,class 里面就充斥…...

目录遍历漏洞
漏洞挖掘之目录遍历漏洞 (baidu.com) 从0到1完全掌握目录遍历漏洞 0x01 什么是目录遍历漏洞 目录遍历漏洞是由于网站存在配置缺陷,导致网站目录可以被任意浏览,这会导致网站很多隐私文件与目录泄露。 比如数据库备份文件、配置文件等,攻击…...

Python基础入门例程10-NP10 牛牛最好的朋友们
目录 描述 输入描述: 输出描述: 示例1 解答: 说明: 描述 牛牛有两个最好的朋友,他们的名字分别用input读入记录在两个字符串中,请使用字符串连接()帮助牛牛将两个朋友的名字依…...

html web前端,登录,post请求提交 json带参
html web前端,登录,post请求提交 json带参 3ca9855b3fd279fa17d46f01dc652030.jpg <!DOCTYPE html> <html><head><meta http-equiv"Content-Type" content"text/html; charsetutf-8" /><title></t…...
防火墙实验
防火墙 ping(网络测试工具,测试主机之间的可达性)原理: 发送一些小的网络数据包(ICMP数据包)到目标主机,并等待目标主机返回一个响应(通常是回显应答 Echo Reply)。 ss…...
php中进程、线程、协程详细讲解
目录 一、什么是进程、线程、协程 1、什么是进程(Process): 2 、什么是线程(Thread): 3、什么是协程(Coroutine): 二、 进程、线程、协程的关系 1、进程与线程关系 …...
无线通信中SINR的含义
在无线通信中,SINR代表"Signal-to-Interference-plus-Noise Ratio",即信号与干扰加噪声比。这是一个重要的性能度量,用于评估和描述接收信号的质量,以及在无线通信系统中的通信性能。 SINR考虑了以下三个关键因素&…...
pnp单目相机标定测距
参考:opencv 单目相机pnp测距(Cpp)-CSDN博客...

Java反射获取内部类方法
Java反射获取内部类方法 结论一、案例准备二、测试方法:使用反射获取类的成员内部类和方法具体操作具体操作(使用getDeclaredClasses) 结论 Java 通过反射可以获得内部类,包括内部类属性信息和方法。 一、案例准备 创建了一个类…...

发挥服务器的无限潜能:创意项目、在线社区和更多
✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 ✨特色专栏:…...
华为OD 绘图机器(100分)【java】A卷+B卷
华为OD统一考试A卷+B卷 新题库说明 你收到的链接上面会标注A卷还是B卷。目前大部分收到的都是B卷。 B卷对应20022部分考题以及新出的题目,A卷对应的是新出的题目。 我将持续更新最新题目 获取更多免费题目可前往夸克网盘下载,请点击以下链接进入: 我用夸克网盘分享了「华为O…...
文件上传接口
以下是一个简单的Java文件上传接口的示例代码: import org.springframework.http.HttpStatus;import org.springframework.http.ResponseEntity;import org.springframework.web.bind.annotation.PostMapping;import org.springframework.web.bind.annotation.Requ…...
基于矢量控制策略的异步电机调速系统设计
摘 要 由于国内人民生活水平的提高,科技不断地进步,控制不断地完善,从而促使矢量控制技术在电气传动系统领域占据主导权,也使得交流异步电机调速控制系统被广泛应用。在交流异步电机调速系统设计领域中,矢量控制成为目…...
Ubuntu下载工具ip addr、ifconfig、ping、make
Ubuntu下载工具ip addr、ifconfig、ping、make ping 在 Ubuntu 上获取网络工具包通常是通过安装相关软件包的方式来完成的。Ubuntu 默认包含一些常见的网络工具,但如果你需要安装其他工具,你可以使用 apt 命令或者 snap 命令进行安装。以下是一些常见的…...

【数据结构】常见复杂度习题详解 ------ 习题篇
文章目录 📋前言一. ⛳️前篇回顾二. ⛳️常见时间复杂度计算举例1️⃣实例一2️⃣实例二3️⃣实例三4️⃣实例四5️⃣实例五6️⃣实例六7️⃣实例七8️⃣实例八 三. ⛳️常见空间复杂度计算举例1️⃣实例一2️⃣实例二3️⃣实例三 四. ⛳️总结 📋前言 …...
一、vue介绍
一、介绍 vue式前端框架,是一套用于构建用户界面的渐进式框架 1、安装vue 安装node.js(配置环境变量) https://nodejs.org/en/download/ 更换镜像 npm config set registry https://registry.npm.taobao.org 查看镜像 npm config get regi…...
Linux ARMv8 异常向量表
http://blog.chinaunix.net/uid-69947851-id-5830546.html 本章接着《Linux内核启动》部分讲解,我们知道了在进入start_kernel之前,通过指令adr_l x8, vectors;msr vbar_el1, x8设置了异常向量表,那么异常向量表的结构是怎么样…...

C++基类和派生类的内存分配,多态的实现
目录 基类和派生类的内存分配基类和派生类的成员归属多态的实现 基类和派生类的内存分配 类包括成员变量(data member)和成员函数(member function)。 成员变量分为静态数据(static data)和非静态数据&…...
C/C++基础
C 二进制 问题:二进制怎么表示整数、小数、正数、负数,如何存储?加减乘除怎么运算(见文章《计算机加减乘除本质》)? 变量 c定义一个变量的时候,需要事先定义变量大小和变量类型。 //有符号…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...

AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...