当前位置: 首页 > news >正文

【算法题】得到K个半回文串的最小修改次数

题目:

给你一个字符串 s 和一个整数 k ,请你将 s 分成 k 个 子字符串 ,使得每个 子字符串 变成 半回文串 需要修改的字符数目最少。

请你返回一个整数,表示需要修改的 最少 字符数目。

注意:

如果一个字符串从左往右和从右往左读是一样的,那么它是一个 回文串 。
如果长度为 len 的字符串存在一个满足 1 <= d < len 的正整数 d ,len % d == 0 成立且所有对 d 做除法余数相同的下标对应的字符连起来得到的字符串都是 回文串 ,那么我们说这个字符串是 半回文串 。比方说 “aa” ,“aba” ,“adbgad” 和 “abab” 都是 半回文串 ,而 “a” ,“ab” 和 “abca” 不是。
子字符串 指的是一个字符串中一段连续的字符序列。

示例 1:

输入:s = “abcac”, k = 2
输出:1
解释:我们可以将 s 分成子字符串 “ab” 和 “cac” 。子字符串 “cac” 已经是半回文串。如果我们将 “ab” 变成 “aa” ,它也会变成一个 d = 1 的半回文串。
该方案是将 s 分成 2 个子字符串的前提下,得到 2 个半回文子字符串需要的最少修改次数。所以答案为 1 。
示例 2:

输入:s = “abcdef”, k = 2
输出:2
解释:我们可以将 s 分成子字符串 “abc” 和 “def” 。子字符串 “abc” 和 “def” 都需要修改一个字符得到半回文串,所以我们总共需要 2 次字符修改使所有子字符串变成半回文串。
该方案是将 s 分成 2 个子字符串的前提下,得到 2 个半回文子字符串需要的最少修改次数。所以答案为 2 。
示例 3:

输入:s = “aabbaa”, k = 3
输出:0
解释:我们可以将 s 分成子字符串 “aa” ,“bb” 和 “aa” 。
字符串 “aa” 和 “bb” 都已经是半回文串了。所以答案为 0 。

提示:

2 <= s.length <= 200
1 <= k <= s.length / 2
s 只包含小写英文字母。

java代码:

class Solution {char[] chars;int[][] dps;int[][] checks;public int minimumChanges(String s, int k) {this.chars = s.toCharArray();final int n = chars.length;this.dps = new int[n][k + 1];this.checks = new int[n][n];return dp(0, k) - k;}private int checkD(int head, int tail, int d) {final int length = tail - head + 1;int res = 0;for (int x = 0; x < d; x++) {for (int left = head + x, right = left + length - d; left < right; left += d, right -= d) {if (chars[left] != chars[right]) res++;}}return res;}private int check(int head, int tail) {if (checks[head][tail] > 0) return checks[head][tail];int length = tail - head + 1;int sq = (int)Math.sqrt(length);int best = checkD(head, tail, 1);for (int d = 2; d <= sq; d++) {if (length % d > 0) continue;best = Math.min(best, checkD(head, tail, d));best = Math.min(best, checkD(head, tail, length / d));}return checks[head][tail] = best + 1;}private int dp(int head, int k) {if (k == 1) return check(head, chars.length - 1);if (dps[head][k] > 0) return dps[head][k];final int end = chars.length - (k - 1) * 2;int best = Integer.MAX_VALUE;for (int tail = head + 1; tail < end; tail++) {int res = check(head, tail) + dp(tail + 1, k - 1);best = Math.min(best, res);}return dps[head][k] = best;} 
}

相关文章:

【算法题】得到K个半回文串的最小修改次数

题目&#xff1a; 给你一个字符串 s 和一个整数 k &#xff0c;请你将 s 分成 k 个 子字符串 &#xff0c;使得每个 子字符串 变成 半回文串 需要修改的字符数目最少。 请你返回一个整数&#xff0c;表示需要修改的 最少 字符数目。 注意&#xff1a; 如果一个字符串从左往…...

C# 通过IP获取Mac地址(ARP)

C# 通过IP获取Mac地址 [DllImport("Iphlpapi.dll")] private static unsafe extern int SendARP(Int32 dest, Int32 host, ref Int32 mac, ref Int32 length);[DllImport("Ws2_32.dll")] private static extern Int32 inet_addr(string ip);public static…...

【QT】信号和槽

一、前置示例代码 main.cpp #include "widget.h"#include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv); // 应用程序对象a&#xff0c;在Qt中&#xff0c;应用程序对象&#xff0c;有且仅有一个。Widget w; // 窗口对…...

有话则长,无话则短

有话则长&#xff0c;无话则短...

云台/稳定器/无人机姿态控制之欧拉角与四元数控制优缺点分析

基于欧拉角的姿态控制简述&#xff1a; 通过陀螺仪数据解算出姿态&#xff1a;pitch,roll,yaw(相对航向)&#xff0c;根据目标 姿态:dst_pitch,dst_roll,dst_yaw计算出误差姿态pitch_err,roll_err,yaw_err。将误差姿态转换为目标速度e_pitch_rate,e_roll_rate,e_yaw_rate。然后…...

Go 工具链详解(六):依赖管理神器

go mod 是 Golang 的官方依赖管理工具&#xff0c;从 Go 1.11 版本开始引入。go mod 使用一种被称为模块&#xff08;modules&#xff09;的方式来管理依赖&#xff0c;每个模块都包含了一组 Golang 包。一个 Go 程序可以由多个模块组成&#xff0c;每个模块都可以有自己的 go.…...

C语言解决约瑟夫环问题

约瑟夫环问题是一个经典的数学问题&#xff0c;它的描述如下&#xff1a;有n个人围成一圈&#xff0c;从第1个人开始报数&#xff0c;数到第m个人出列&#xff0c;然后从出列的下一个人开始重新报数&#xff0c;数到第m个人出列&#xff0c;如此循环&#xff0c;直到最后一个人…...

6.6 Elasticsearch(六)京淘项目改造

文章目录 1.项目准备2.基础配置2.1 添加pom.xml依赖2.2 yml配置es服务器地址列表 3.具体实现3.1 item实体类封装3.2 添加接口3.3 SearchController 4.search.jsp界面4.1 搜索内容展示4.2 高亮内容样式设置4.3 搜索框内容回填4.4 添加上下页按钮 1.项目准备 我们切换回到此前的…...

Socks5代理:数字化时代的技术支柱

随着数字化时代的到来&#xff0c;技术不仅改变了我们的日常生活&#xff0c;还重新定义了商业、通信、娱乐和全球互联。在这一浪潮中&#xff0c;Socks5代理技术崭露头角&#xff0c;成为跨界电商、爬虫数据分析、企业出海和游戏体验的关键推动力。这项技术不仅在实现数字化愿…...

基本微信小程序的汽车租赁公司小程序

项目介绍 任何系统都要遵循系统设计的基本流程&#xff0c;本系统也不例外&#xff0c;同样需要经过市场调研&#xff0c;需求分析&#xff0c;概要设计&#xff0c;详细设计&#xff0c;编码&#xff0c;测试这些步骤&#xff0c;基于Java语言、微信小程序技术设计并实现了汽…...

Leetcode刷题详解——搜索插入位置

1. 题目链接&#xff1a;35. 搜索插入位置 2. 题目描述&#xff1a; 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。…...

centos升级openssh

注意&#xff1a; openssh升级异常会造成服务失联&#xff0c;如果在允许的情况下可以安装talent服务&#xff0c;使用talent升级&#xff1b; 如果不能安装talent服务&#xff0c;可以打开多个终端&#xff0c;启动ping命令&#xff0c;防止升级终端失败后&#xff0c;作为备用…...

架构、框架、模式,极简文字介绍

1、架构、框架、模式是一种从大到小的关系&#xff0c;也是一种组合关系 2、架构一般针对一个行业或一类应用&#xff0c;是技术和应用的完美组合 3、框架比较小&#xff0c;很多表现为中间件&#xff0c;框架一般是从技术角度解决同类问题&#xff0c;从技术的横切面来解决实…...

Java实现Fisher‘s Exact Test 的置信区间的计算

实现代码 package com.bgi.aigi.common.utils;public class FisherExactUtils {public static double[] getConfidenceInterval(double[][] data) {if (datanull||data.length!2||data[0].length!2||data[1].length!2) {return null;}double[] intervalnew double[2];double …...

YOLOv8改进:全网原创首发 | 新颖的多尺度卷积注意力(MSCA),即插即用,助力小目标检测 | NeurIPS2022

💡💡💡本文全网首发独家改进:多尺度卷积注意力(MSCA),有效地提取上下文信息,新颖度高,创新十足。 1)作为注意力MSCA使用; 推荐指数:五星 MSCA | 亲测在多个数据集能够实现涨点,多尺度特性在小目标检测表现也十分出色。 💡💡💡Yolov8魔术师,独家首发…...

linux中好玩的数据流定向和管道命令一

知识点复习&#xff1a; 什么是数据流定向&#xff0c;个人理解就是将 一些结果信息不打印在屏幕上&#xff0c;而是定位在某一个文件里面 ll /wdf > file 会覆盖file的原内容 ll /wdf >> 会追加到原文件后面 比如在自己的目录新建1.TXT&#xff0c; 2.txt ll /…...

tesseract-ocr-w64-setup-5.3.3.20231005.exe 百度网盘下载

链接&#xff1a;https://pan.baidu.com/s/1q6u-nRvj2S8n6jSYz2iqig?pwdbtm4 提取码&#xff1a;btm4...

Linux环境下Redis 集群部署

Linux环境下Redis 集群部署 1.单机Redis部署2.Redis 集群配置2.1 创建redis集群安装目录2.2 将redis单机部署目录下的redis.confi文件复制到每个目录下2.3 修改每个文件夹下的redis.conf2.4 修改完六个配置内容后开始启动2.5 启动完后查看进程2.6 建集群 1.单机Redis部署 Linu…...

html iframe 框架有哪些优缺点?

目录 前言&#xff1a; 用法&#xff1a; 理解&#xff1a; 优点&#xff1a; 嵌套外部内容&#xff1a; 独立性&#xff1a; 分离安全性&#xff1a; 跨平台兼容性&#xff1a; 方便维护&#xff1a; 缺点&#xff1a; 性能开销&#xff1a; 用户体验问题&#xf…...

git 版本管理

标签管理 git tag: 标签的操作 用于给某次提交打个标签 命令&#xff1a;git tag B08P09 为当前提交打上 B08P09 的标签 命令&#xff1a;git tag B08P09 ab1591eb4e06c1e93fdd50126b9fab8a88d89155 为这个节点打上 B08P09 的标签 命令&#xff1a;git tag -a <tagname>…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...