当前位置: 首页 > news >正文

【Overload游戏引擎细节分析】standard材质Shader

提示:Shader属于GPU编程,难写难调试,阅读本文需有一定的OpenGL基础,可以写简单的Shader,不适合不会OpenGL的朋友

一、Blinn-Phong光照模型

Blinn-Phong光照模型,又称为Blinn-phong反射模型(Blinn–Phong reflection model)或者 phong 修正模型(modified Phong reflection model),是由 Jim Blinn于 1977 年在文章中对传统 phong 光照模型基础上进行修改提出的。它是一个经验模型,并不完全符合真实世界中的光照现象,但由于实现起来简单方便,并且计算速度和得到的效果都还不错,因此在早期被广泛的使用。
相对于Phong模型,Blinn-Phong是对高光部分进行简化计算,对于环境光、漫反射计算是一样的。环境光、漫反射一般处理如下:

  • 环境光:是光线经过周围环境表面多次反射后形成的,利用它可以描述一块区域的亮度,在光照模型中,通常用一个常量来表示;
  • 漫反射:当光线照射到一个点时,该光线会被均匀的反射到各个方向,这种反射称为漫反射。也就是说,在漫反射中,视角的位置是不重要的,因为反射是完全随机的,因此可以认为漫反射光在任何反射方向上的分布都是一样的,一般可使用Lambert余弦定律计算。
  • 高光反射(Specular): 也称镜面光,若物体表面很光滑,当平行入射的光线射到这个物体表面时,仍会平行地向一个方向反射出来。

高光计算

直接上结论,因为这个模型资料很多,大家可以参考https://zhuanlan.zhihu.com/p/442023993

在这里插入图片描述
h = l + v ∣ l ∣ + ∣ v ∣ h=\frac{l+v}{\left | l \right | + \left | v \right | } h=l+vl+v
L s = k s I ∗ m a x ( 0 , c o s ( α ) ) p = k s I ∗ m a x ( 0 , n ⋅ h ) p L_{s}=k_{s}I*max(0, cos(\alpha))^{p}=k_{s}I*max(0, n\cdot h)^{p} Ls=ksImax(0,cos(α))p=ksImax(0,nh)p
h——半程向量
Ls——高光颜色
k s k_{s} ks—— 高光反射系数
n——反光度因子

Overload中计算Blinn-Phong光照模型的shader代码如下:

/*
* BlinnPhong模型,只计算漫反射与高光
* p_LightColor: 光强
* p_LightDir:光源方向
* p_Luminosity:衰减系数
*/
vec3 BlinnPhong(vec3 p_LightDir, vec3 p_LightColor, float p_Luminosity)
{// 半程向量const vec3  halfwayDir          = normalize(p_LightDir + g_ViewDir); // 计算半程向量const float diffuseCoefficient  = max(dot(g_Normal, p_LightDir), 0.0); // Lambert余弦const float specularCoefficient = pow(max(dot(g_Normal, halfwayDir), 0.0), u_Shininess * 2.0);// 片元颜色:光强 * 漫反射系数 * cos(theta) * 衰减因子 + 光强 * 高光反射系数 * 高光指数 * 衰减因子return p_LightColor * g_DiffuseTexel.rgb * diffuseCoefficient * p_Luminosity + ((p_Luminosity > 0.0) ? (p_LightColor * g_SpecularTexel.rgb * specularCoefficient * p_Luminosity) : vec3(0.0));
}

二、不同光源计算

常见的光源有:平行光、点光源、聚光灯,他们的具体定义及计算可参考:https://learnopengl-cn.readthedocs.io/zh/latest/02%20Lighting/05%20Light%20casters/,里面讲的比较详细。

光源数据

不同的光源有不同的数据,而且场景中光源数量也是不确定的,所以这种情况了Overload使用OpenGL的SSBO传递数据。光源数据转换成一个矩阵,转换代码如下:

OvMaths::FMatrix4 OvRendering::Entities::Light::GenerateMatrix() const
{OvMaths::FMatrix4 result;// 存放光源位置(对应平行光存放的是方向)auto position = m_transform.GetWorldPosition();result.data[0] = position.x;result.data[1] = position.y;result.data[2] = position.z;// 光源朝向auto forward = m_transform.GetWorldForward();result.data[4] = forward.x;result.data[5] = forward.y;result.data[6] = forward.z;// 光源颜色result.data[8] = static_cast<float>(Pack(color));// 聚光灯参数result.data[12] = type;result.data[13] = cutoff;result.data[14] = outerCutoff;// 光源的衰减参数result.data[3] = constant;result.data[7] = linear;result.data[11] = quadratic;// 光源强度result.data[15] = intensity;return result;
}

Pack函数是将光颜色RGBA变成一个32位无符号整数,感兴趣可以看看,这种做法经常会见到。要想具体查看每种光源数据,可以使用RenderDoc进行查看,加深对每种光源数据的认识。RenderDoc是Shader编写利器,而且学起来也不难。
在这里插入图片描述

三、Overload中Standard材质的shader

Overload的材质如何创建就不再讲了,上节已经讲过的。打开一个材料例子,编辑可看到其可设置漫反射、高度、mask、法线、高光贴图,以及其他shader中使用的参数。
在这里插入图片描述
Shader是实现材质的核心,下面分析其代码。Standard材质的Shader在Standard.glsl文件中。

Vertex Shader

其Vertext shader代码如下:

#shader vertex
#version 430 core/*顶点着色器的入参*/
layout (location = 0) in vec3 geo_Pos; // 顶点坐标
layout (location = 1) in vec2 geo_TexCoords; // 顶点纹理坐标
layout (location = 2) in vec3 geo_Normal; // 顶点法线
layout (location = 3) in vec3 geo_Tangent; // 顶点的切线
layout (location = 4) in vec3 geo_Bitangent; // 顶点切线与法线的叉乘,三者组成一个本地坐标系/* Global information sent by the engine */
layout (std140) uniform EngineUBO
{mat4    ubo_Model; // 模型矩阵mat4    ubo_View;  // 视图矩阵mat4    ubo_Projection; // 投影矩阵vec3    ubo_ViewPos; // 摄像机位置float   ubo_Time;
};/* Information passed to the fragment shader */
out VS_OUT
{vec3        FragPos; // 顶点的全局坐标vec3        Normal; // 顶点法线vec2        TexCoords; // 纹理坐标mat3        TBN;flat vec3   TangentViewPos;vec3        TangentFragPos;
} vs_out;void main()
{vs_out.TBN = mat3    // 全局坐标系到本地坐标系的旋转矩阵(normalize(vec3(ubo_Model * vec4(geo_Tangent,   0.0))),normalize(vec3(ubo_Model * vec4(geo_Bitangent, 0.0))),normalize(vec3(ubo_Model * vec4(geo_Normal,    0.0))));mat3 TBNi = transpose(vs_out.TBN); // 为什么要转置?vs_out.FragPos          = vec3(ubo_Model * vec4(geo_Pos, 1.0)); // 全局坐标系的下的坐标vs_out.Normal           = normalize(mat3(transpose(inverse(ubo_Model))) * geo_Normal); // 全局坐标系下的法线vs_out.TexCoords        = geo_TexCoords; // 纹理坐标,不用变vs_out.TangentViewPos   = TBNi * ubo_ViewPos;vs_out.TangentFragPos   = TBNi * vs_out.FragPos;gl_Position = ubo_Projection * ubo_View * vec4(vs_out.FragPos, 1.0);
}

其输入是顶点信息,包括顶点的坐标、法线、纹理、切线、切线与法线的叉乘。其实一般如无需特殊需求,模型只需坐标、法线、纹理即可。这里的geo_Bitangent看着像是切线与法线的叉乘,但使用RenderDoc获取顶点着色器的输入发现geo_Bitangent与切线与法线的叉乘很接近,但并不完全相等。所以geo_Bitangent究竟是不是切线与法线的叉乘不是完全肯定,但对我们看源码影响不大,暂且认为他们三个正好组成一个本地坐标系吧。
看其main函数,计算顶点全局坐标、法线、NDC坐标。注意,法线是用模型矩阵 ( M − 1 ) T (M^{-1})^{T} (M1)T转换得到。VS_OUT中的输出量会插值,最后输给片元着色器。

片元着色器

再来看片元Shader:

#shader fragment
#version 430 core/* Global information sent by the engine */
layout (std140) uniform EngineUBO
{mat4    ubo_Model;mat4    ubo_View;mat4    ubo_Projection;vec3    ubo_ViewPos;float   ubo_Time;
};/* Information passed from the fragment shader */
in VS_OUT
{vec3        FragPos;vec3        Normal;vec2        TexCoords;mat3        TBN;flat vec3   TangentViewPos;vec3        TangentFragPos;
} fs_in;/* Light information sent by the engine */
layout(std430, binding = 0) buffer LightSSBO
{mat4 ssbo_Lights[];
};/* Uniforms (Tweakable from the material editor) */
uniform vec2        u_TextureTiling           = vec2(1.0, 1.0);
uniform vec2        u_TextureOffset           = vec2(0.0, 0.0);
uniform vec4        u_Diffuse                 = vec4(1.0, 1.0, 1.0, 1.0);
uniform vec3        u_Specular                = vec3(1.0, 1.0, 1.0);
uniform float       u_Shininess               = 100.0;
uniform float       u_HeightScale             = 0.0;
uniform bool        u_EnableNormalMapping     = false;
uniform sampler2D   u_DiffuseMap;
uniform sampler2D   u_SpecularMap;
uniform sampler2D   u_NormalMap;
uniform sampler2D   u_HeightMap;
uniform sampler2D   u_MaskMap;/* Global variables */
vec3 g_Normal;
vec2 g_TexCoords;
vec3 g_ViewDir;
vec4 g_DiffuseTexel;
vec4 g_SpecularTexel;
vec4 g_HeightTexel;
vec4 g_NormalTexel;out vec4 FRAGMENT_COLOR;vec3 UnPack(float p_Target)
{return vec3(float((uint(p_Target) >> 24) & 0xff)    * 0.003921568627451,float((uint(p_Target) >> 16) & 0xff)    * 0.003921568627451,float((uint(p_Target) >> 8) & 0xff)     * 0.003921568627451);
}bool PointInAABB(vec3 p_Point, vec3 p_AabbCenter, vec3 p_AabbHalfSize)
{return(p_Point.x > p_AabbCenter.x - p_AabbHalfSize.x && p_Point.x < p_AabbCenter.x + p_AabbHalfSize.x &&p_Point.y > p_AabbCenter.y - p_AabbHalfSize.y && p_Point.y < p_AabbCenter.y + p_AabbHalfSize.y &&p_Point.z > p_AabbCenter.z - p_AabbHalfSize.z && p_Point.z < p_AabbCenter.z + p_AabbHalfSize.z);
}vec2 ParallaxMapping(vec3 p_ViewDir)
{const vec2 parallax = p_ViewDir.xy * u_HeightScale * texture(u_HeightMap, g_TexCoords).r;return g_TexCoords - vec2(parallax.x, 1.0 - parallax.y);
}/*
* BlinnPhong模型,只计算漫反射与高光
* p_LightColor: 光强
* p_LightDir:光源方向
* p_Luminosity:衰减系数
*/
vec3 BlinnPhong(vec3 p_LightDir, vec3 p_LightColor, float p_Luminosity)
{// 半程向量const vec3  halfwayDir          = normalize(p_LightDir + g_ViewDir);const float diffuseCoefficient  = max(dot(g_Normal, p_LightDir), 0.0); // Lambert余弦const float specularCoefficient = pow(max(dot(g_Normal, halfwayDir), 0.0), u_Shininess * 2.0);// 片元颜色:光强 * 漫反射系数 * cos(theta) * 衰减因子 + 光强 * 高光反射系数 * 高光指数 * 衰减因子return p_LightColor * g_DiffuseTexel.rgb * diffuseCoefficient * p_Luminosity + ((p_Luminosity > 0.0) ? (p_LightColor * g_SpecularTexel.rgb * specularCoefficient * p_Luminosity) : vec3(0.0));
}// 计算衰减因子,跟LearnOpenGL中的公式一致
float LuminosityFromAttenuation(mat4 p_Light)
{const vec3  lightPosition   = p_Light[0].rgb;const float constant        = p_Light[0][3];const float linear          = p_Light[1][3];const float quadratic       = p_Light[2][3];const float distanceToLight = length(lightPosition - fs_in.FragPos);const float attenuation     = (constant + linear * distanceToLight + quadratic * (distanceToLight * distanceToLight));return 1.0 / attenuation;
}vec3 CalcPointLight(mat4 p_Light)
{/* Extract light information from light mat4 */const vec3 lightPosition  = p_Light[0].rgb;  // 光源位置const vec3 lightColor     = UnPack(p_Light[2][0]); // 光源颜色const float intensity     = p_Light[3][3]; // 光强const vec3  lightDirection  = normalize(lightPosition - fs_in.FragPos); // 光源方向const float luminosity      = LuminosityFromAttenuation(p_Light); // 衰减因子return BlinnPhong(lightDirection, lightColor, intensity * luminosity);
}vec3 CalcDirectionalLight(mat4 light)
{return BlinnPhong(-light[1].rgb, UnPack(light[2][0]), light[3][3]);
}vec3 CalcSpotLight(mat4 p_Light)
{/* Extract light information from light mat4 */const vec3  lightPosition   = p_Light[0].rgb;   // 聚光灯位置const vec3  lightForward    = p_Light[1].rgb;   // 聚光灯朝向const vec3  lightColor      = UnPack(p_Light[2][0]); // 光源颜色const float intensity       = p_Light[3][3];  // 光强const float cutOff          = cos(radians(p_Light[3][1])); // 内圆锥角 const float outerCutOff     = cos(radians(p_Light[3][1] + p_Light[3][2])); // 内圆锥角 + 外圆锥角 const vec3  lightDirection  = normalize(lightPosition - fs_in.FragPos); // 光方向const float luminosity      = LuminosityFromAttenuation(p_Light);  // 衰减因子/* Calculate the spot intensity */const float theta           = dot(lightDirection, normalize(-lightForward)); // cos(theta)const float epsilon         = cutOff - outerCutOff;    // 内部圆锥角与外部圆锥角之差const float spotIntensity   = clamp((theta - outerCutOff) / epsilon, 0.0, 1.0); // 边缘软化return BlinnPhong(lightDirection, lightColor, intensity * spotIntensity * luminosity);
}vec3 CalcAmbientBoxLight(mat4 p_Light)
{const vec3  lightPosition   = p_Light[0].rgb;const vec3  lightColor      = UnPack(p_Light[2][0]);const float intensity       = p_Light[3][3];const vec3  size            = vec3(p_Light[0][3], p_Light[1][3], p_Light[2][3]);return PointInAABB(fs_in.FragPos, lightPosition, size) ? g_DiffuseTexel.rgb * lightColor * intensity : vec3(0.0);
}vec3 CalcAmbientSphereLight(mat4 p_Light)
{const vec3  lightPosition   = p_Light[0].rgb;const vec3  lightColor      = UnPack(p_Light[2][0]);const float intensity       = p_Light[3][3];const float radius          = p_Light[0][3];return distance(lightPosition, fs_in.FragPos) <= radius ? g_DiffuseTexel.rgb * lightColor * intensity : vec3(0.0);
}void main()
{g_TexCoords = u_TextureOffset + vec2(mod(fs_in.TexCoords.x * u_TextureTiling.x, 1), mod(fs_in.TexCoords.y * u_TextureTiling.y, 1));  // 计算纹理贴图坐标/* Apply parallax mapping */if (u_HeightScale > 0)  // 使用高度贴图g_TexCoords = ParallaxMapping(normalize(fs_in.TangentViewPos - fs_in.TangentFragPos));/* Apply color mask */if (texture(u_MaskMap, g_TexCoords).r != 0.0) // 可以通过u_MaskMap屏蔽部分区域{g_ViewDir           = normalize(ubo_ViewPos - fs_in.FragPos); // 视线方向(视点坐标-片元坐标)g_DiffuseTexel      = texture(u_DiffuseMap,  g_TexCoords) * u_Diffuse; // 漫反射颜色g_SpecularTexel     = texture(u_SpecularMap, g_TexCoords) * vec4(u_Specular, 1.0); // 高光项的颜色if (u_EnableNormalMapping) // 使用法线贴图{g_Normal = texture(u_NormalMap, g_TexCoords).rgb;g_Normal = normalize(g_Normal * 2.0 - 1.0);   g_Normal = normalize(fs_in.TBN * g_Normal);}else{g_Normal = normalize(fs_in.Normal);}vec3 lightSum = vec3(0.0);// 对灯光进行循环,计算每盏灯的贡献for (int i = 0; i < ssbo_Lights.length(); ++i){switch(int(ssbo_Lights[i][3][0])){case 0: lightSum += CalcPointLight(ssbo_Lights[i]);         break; // 计算点光源case 1: lightSum += CalcDirectionalLight(ssbo_Lights[i]);   break; // 计算case 2: lightSum += CalcSpotLight(ssbo_Lights[i]);          break; // 计算聚光灯case 3: lightSum += CalcAmbientBoxLight(ssbo_Lights[i]);    break;case 4: lightSum += CalcAmbientSphereLight(ssbo_Lights[i]); break;}}FRAGMENT_COLOR = vec4(lightSum, g_DiffuseTexel.a);}else{FRAGMENT_COLOR = vec4(0.0);}
}

Fragment Sahder代码看着很多,拆解一下就是分别计算各个灯光的贡献,进行累加。计算每种灯光时,最终都是使用Blinn-Phonge模型计算的。每种类型的灯光基本与LearnOpenGL中的描述一致。UnPack函数可以学习一下,看看如何float如何变成RGB。

相关文章:

【Overload游戏引擎细节分析】standard材质Shader

提示&#xff1a;Shader属于GPU编程&#xff0c;难写难调试&#xff0c;阅读本文需有一定的OpenGL基础&#xff0c;可以写简单的Shader&#xff0c;不适合不会OpenGL的朋友 一、Blinn-Phong光照模型 Blinn-Phong光照模型&#xff0c;又称为Blinn-phong反射模型&#xff08;Bli…...

Leetcode—7.整数反转【中等】

2023每日刷题&#xff08;十&#xff09; Leetcode—7.整数反转 关于为什么要设long变量 参考自这篇博客 long可以表示-2147483648而且只占4个字节&#xff0c;所以能满足题目要求 复杂逻辑版实现代码 int reverse(int x){int arr[32] {0};long y;int flag 1;if(x <…...

lua-web-utils和proxy设置示例

以下是一个使用lua-web-utils和proxy的下载器程序&#xff1a; -- 首先安装lua-web-utils库 local lwu require "lwu" ​ -- 获取服务器 local function get_proxy()local proxy_url "duoipget_proxy"local resp, code, headers, err lwu.fetch(proxy_…...

分享一下在微信小程序里怎么添加储值卡功能

在微信小程序中添加储值卡功能&#xff0c;可以让消费者更加便捷地管理和使用储值卡&#xff0c;同时也能增加商家的销售收入。下面是一篇关于如何在微信小程序中添加储值卡功能的软文。 标题&#xff1a;微信小程序添加储值卡功能&#xff0c;便捷与高效并存 随着科技的不断发…...

2023高频前端面试题-http

1. HTTP有哪些⽅法&#xff1f; HTTP 1.0 标准中&#xff0c;定义了3种请求⽅法&#xff1a;GET、POST、HEAD HTTP 1.1 标准中&#xff0c;新增了请求⽅法&#xff1a;PUT、PATCH、DELETE、OPTIONS、TRACE、CONNECT 2. 各个HTTP方法的具体作用是什么&#xff1f; 方法功能G…...

图像识别在自动驾驶汽车中的多传感器融合技术

摘要&#xff1a; 介绍文章的主要观点和发现。 引言&#xff1a; 自动驾驶汽车的兴起和重要性。多传感器融合技术在自动驾驶中的关键作用。 第一部分&#xff1a;图像识别技术 图像识别的基本原理。图像传感器和摄像头在自动驾驶中的应用。深度学习和卷积神经网络&#xff…...

Kafka To HBase To Hive

目录 1.在HBase中创建表 2.写入API 2.1普通模式写入hbase&#xff08;逐条写入&#xff09; 2.2普通模式写入hbase&#xff08;buffer写入&#xff09; 2.3设计模式写入hbase&#xff08;buffer写入&#xff09; 3.HBase表映射至Hive中 1.在HBase中创建表 hbase(main):00…...

python pandas.DataFrame 直接写入Clickhouse

import pandas as pd import sqlalchemy from clickhouse_sqlalchemy import Table, engines from sqlalchemy import create_engine, MetaData, Column import urllib.parsehost 1.1.1.1 user default password default db test port 8123 # http连接端口 engine create…...

德语中第二虚拟式在主动态的形式,柯桥哪里可以学德语

德语中第二虚拟式在主动态的形式 1. 对于大多数的动词&#xff0c;一般使用这样的一般现在时时态&#xff1a; wrde 动词原形 例句&#xff1a;Wenn es nicht so viel kosten wrde, wrde ich mir ein Haus am Meer kaufen. 如果不花这么多钱&#xff0c;我会在海边买一栋房…...

[Python进阶] 消息框、弹窗:tkinter库

6.16 消息框、弹窗&#xff1a;tkinter 6.16.1 前言 应用程序中的提示信息处理程序是非常重要的部分&#xff0c;用户要知道他输入的资料到底正不正确&#xff0c;或者是应用程序有一些提示信息要告诉用户&#xff0c;都必须通过提示信息处理程序来显示适当的信息&#xff0c…...

(免费领源码)java#Springboot#mysql装修选购网站99192-计算机毕业设计项目选题推荐

摘 要 随着科学技术&#xff0c;计算机迅速的发展。在如今的社会中&#xff0c;市场上涌现出越来越多的新型的产品&#xff0c;人们有了不同种类的选择拥有产品的方式&#xff0c;而电子商务就是随着人们的需求和网络的发展涌动出的产物&#xff0c;电子商务网站是建立在企业与…...

生活废品回收系统 JAVA语言设计和实现

目录 一、系统介绍 二、系统下载 三、系统截图 一、系统介绍 基于VueSpringBootMySQL的生活废品回收系统包含资源类型模块、资源品类模块、回收机构模块、回收机构模块、资源销售单模块、资源交易单模块、资源交易单模块&#xff0c;还包含系统自带的用户管理、部门管理、角…...

redhat/centos 配置本地yum源

- 详细步骤(首先需要将iso文件上传到服务器)&#xff1a; 1. mkdir /media/cdrom #新建镜像文件挂载目录2. cd /usr/local/src #进入系统镜像文件存放目录3. ls #列出目录文件&#xff0c;可以看到刚刚上传的系统镜像文件4. mount -t iso9660 -o loop /usr/local/src/rhel-s…...

FLStudio2024汉化破解版在哪可以下载?

水果音乐制作软件FLStudio是一款功能强大的音乐创作软件,全名:Fruity Loops Studio。水果音乐制作软件FLStudio内含教程、软件、素材,是一个完整的软件音乐制作环境或数字音频工作站... FL Studio21简称FL 21&#xff0c;全称 Fruity Loops Studio 21&#xff0c;因此国人习惯叫…...

Java 音频处理,音频流转音频文件,获取音频播放时长

1.背景 最近对接了一款智能手表&#xff0c;手环&#xff0c;可以应用与老人与儿童监控&#xff0c;环卫工人监控&#xff0c;农场畜牧业监控&#xff0c;宠物监控等&#xff0c;其中用到了音频传输&#xff0c;通过平台下发语音包&#xff0c;发送远程命令录制当前设备音频并…...

Spring Boot发送邮件

在现代的互联网应用中&#xff0c;发送电子邮件是一项常见的功能需求。Spring Boot提供了简单且强大的邮件发送功能&#xff0c;使得在应用中集成邮件发送变得非常容易。本文将介绍如何在Spring Boot中发送电子邮件&#xff0c;并提供一个完整的示例。 1. 准备工作 在开始之前…...

智慧矿山:AI算法助力!刮板机监测,生产效率和安全性提升!

工作面刮板机在煤矿等采矿场景中起着重要作用。为了提高其生产效率和安全性&#xff0c;研究人员开发了一种基于 AI 算法的刮板机监测技术。 在传统的刮板机监测中&#xff0c;通常需要人工观察和判断刮板机的状态。这种方法存在许多问题&#xff0c;如主观性、耗时和易出错等。…...

Qt跨平台(统信UOS)各种坑解决办法

记录Qt跨平台的坑&#xff0c;方便日后翻阅。 一、环境安装 本人用的是qt 5.14.2.直接在官网下载即可。地址&#xff1a;Index of /archive/qt/5.14/5.14.2 下载linux版本。 下载之后 添加可执行权限。 chmod 777 qt-opensource-linux-x64-5.14.2.run 然后执行。 出现坑1…...

ORB-SLAM3算法1之Ubuntu18.04+ROS-melodic安装ORB-SLAM3及各种问题解决

文章目录 0 引言1 安装依赖1.1 opencv安装1.2 Eigen3安装1.3 Pangolin安装1.4 其他2 编译安装ORB-SLAM32.1 build.sh2.2 build_ros.sh0 引言 ORB-SLAM3,在之前ORB-SLAM和ORB-SLAM2的基础上,新增了IMU多传感器融合SLAM,这是第一个能够使用针孔和鱼眼镜头模型通过单目、立体和…...

git学习笔记之用命令行解决冲突

背景 一般来说&#xff0c;当使用git检测到源分支和目标分支发生冲突时&#xff0c;我们习惯用IDE在本地进行冲突的解决&#xff0c;再合并、push。 但如果冲突文件不多&#xff0c;我们大可以直接用命令行去解决冲突。 方法 第一种方法&#xff1a; 找到所有的>>>…...

C语言中的内联汇编是什么?如何使用内联汇编进行底层编程?

C语言中的内联汇编是一种高级编程技术&#xff0c;允许开发者在C代码中嵌入汇编代码&#xff0c;以实现对特定处理器指令的直接控制和优化。内联汇编通常用于底层编程&#xff0c;例如操作系统开发、嵌入式系统编程和性能关键的应用程序。本文将详细介绍内联汇编的概念、语法和…...

react笔记基础部分(组件生命周期路由)

注意点&#xff1a; class是一个关键字&#xff0c; 类。 所以react 写class, 用classname &#xff0c;会自动编译替换class 点击方法&#xff1a; <button onClick {this.sendData}>给父元素传值</button>常用的插件&#xff1a; 需要引入才能使用的&#xf…...

Sentinel授权规则和规则持久化

大家好我是苏麟 , 今天说说Sentinel规则持久化. 授权规则 授权规则可以对请求方来源做判断和控制。 授权规则 基本规则 授权规则可以对调用方的来源做控制&#xff0c;有白名单和黑名单两种方式。 白名单&#xff1a;来源&#xff08;origin&#xff09;在白名单内的调用…...

JVM(三) 垃圾回收

一、自动垃圾回收 1.1 C/C++的内存管理 在C/C++这类没有自动垃圾回收机制的语言中,一个对象如果不再使用,需要手动释放,否则就会出现内存泄漏。我们称这种释放对象的过程为垃圾回收,而需要程序员编写代码进行回收的方式为手动回收。 内存泄漏指的是不再使用的对象在系统中…...

vue3中使用svg并封装成组件

打包svg地图 安装插件 yarn add vite-plugin-svg-icons -D # or npm i vite-plugin-svg-icons -D # or pnpm install vite-plugin-svg-icons -D使用插件 vite.config.ts import { VantResolver } from unplugin-vue-components/resolvers import { createSvgIconsPlugin } from…...

实验六:DHCP、DNS、Apache、FTP服务器的安装和配置

1. (其它) 掌握Linux下DHCP、DNS、Apache、FTP服务器的安装和配置&#xff0c;在Linux服务器上部署JavaWeb应用 完成单元八的实训内容。 1、安装 JDK 2、安装 MySQL 3、部署JavaWeb应用 安装jdk 教程连接&#xff1a;linux安装jdk8详细步骤-CSDN博客 Jdk来源&#xff1a;linu…...

Python实验项目4 :面对对象程序设计

1&#xff1a;运行下面的程序&#xff0c;回答问题。 &#xff08;1&#xff09;说明程序的执行过程&#xff1b; &#xff08;2&#xff09;程序运行结果是什么&#xff1f; # &#xff08;1&#xff09;说明程序的执行过程&#xff1b; # &#xff08;2&#xff09;程序运行…...

用html、css和jQuery实现图片翻页的特效

在当今的web设计中&#xff0c;图片翻页特效是一种常见而且受欢迎的技术。通过图片的切换与过渡效果&#xff0c;能够使网页更具动感和吸引力。下面写一个简单的示例&#xff0c;来介绍一下如何使用html、css和jQuery实现图片翻页特效。 1&#xff0c;html结构 首先&#xff…...

awk 框架

参考自&#xff1a;https://zhuanlan.zhihu.com/p/627048291?utm_id0语法&#xff0c;由几部分组成 awk [options] script varvalue file(s) awk [options] -f scriptfile varvalue file(s)语法中的script部分&#xff0c;由两部分组成 模式操作 其中一个模式&#xff1a;B…...

专业135总分400+西安交通大学信息与通信工程学院909/815考研经验分享

今年初试发挥不错&#xff0c;400&#xff0c;专业课135&#xff0c;将近一年复习一路走来&#xff0c;感慨很多&#xff0c;希望以下经历可以给后来的同学提供一些参考。 初试备考经验 公共课&#xff1a;三门公共课&#xff0c;政治&#xff0c;英语&#xff0c;数学。在备考…...