python版opencv人脸训练与人脸识别
1.人脸识别准备
使用的两个opencv包
D:\python2023>pip list |findstr opencv
opencv-contrib-python 4.8.1.78
opencv-python 4.8.1.78
数据集使用前一篇Javacv的数据集,网上随便找的60张图片,只是都挪到了D:\face目录下方便遍历
D:\face\1 30张刘德华图片
D:\face\2 30张刘亦菲图片
2.人脸识别模型训练
# -*- coding: utf-8 -*-
import osimport cv2
import numpy as nprecognizer = cv2.face.LBPHFaceRecognizer().create() # Fisher需要reshape
classifier = cv2.CascadeClassifier('E:\opencv\sources\data\haarcascades\haarcascade_frontalface_default.xml')
def load_dataset(dataset_path):images=[]labels=[]for root,dirs,files in os.walk(dataset_path):for file in files:images.append(cv2.imread(os.path.join(root, file),cv2.IMREAD_GRAYSCALE))labels.append(int(os.path.basename(root)))return images,labels
if __name__ == '__main__':images,labels = load_dataset('D:\\face')recognizer.train(images,np.array(labels))recognizer.save('face_model.xml')
3.人脸识别推理预测
# -*- coding: utf-8 -*-
import osimport cv2def face_detect(image):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)classifier = cv2.CascadeClassifier('E:\opencv\sources\data\haarcascades\haarcascade_frontalface_default.xml')faces = classifier.detectMultiScale(gray, 1.2, 5)if (len(faces) == 0):return None, None(x, y, w, h) = faces[0]return gray[y:y + w, x:x + h], faces[0]def draw_rectangle(img, rect):(x, y, w, h) = rectcv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 2)def draw_text(img, text, x, y):cv2.putText(img, text, (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (128, 128, 0), 2)def predict(image):image_copy = image.copy()face, rect = face_detect(image_copy)tuple = recognizer.predict(face)print(tuple)draw_rectangle(image_copy, rect)draw_text(image_copy, str(tuple[0]), rect[0], rect[1])return image_copyif __name__ == '__main__':recognizer = cv2.face.LBPHFaceRecognizer().create() # Fisher需要reshaperecognizer.read("face_model.xml")for root, dirs, files in os.walk('D:\\face\\2'):for file in files:file_path = os.path.join(root, file)predict_image = predict(cv2.imread(file_path))cv2.imshow('result', predict_image)cv2.waitKey(1000)
总结
代码逻辑基本同Javacv,但更简洁,这里训练出来模型准确度也高于Javacv (可能是参数不一致导致的)
相关文章:
python版opencv人脸训练与人脸识别
1.人脸识别准备 使用的两个opencv包 D:\python2023>pip list |findstr opencv opencv-contrib-python 4.8.1.78 opencv-python 4.8.1.78数据集使用前一篇Javacv的数据集,网上随便找的60张图片,只是都挪到了D:\face目录下方便遍历 D:\face\1 30张刘德华图片…...
计算机视觉-数学基础*变换域表示
被研究最多的图像(或任何序列数据)变换域表示是通过傅 里叶分析 。所谓的傅里叶表示就是使用 正弦函数的线性组合来表示信号。对于一个给定的图像I(n1,n2) ,可以用如下方式分解它(即逆傅里叶变换): 其中&a…...
小程序如何设置自取规则
在小程序中,自取规则是指当客户下单时选择无需配送的情况下,如何设置相关的计费方式、指定时段费用、免费金额、预定时间和起取金额。下面将详细介绍如何设置这些规则,以便更好地满足客户的需求。 在小程序管理员后台->配送设置->自…...
Elasticsearch分词器-中文分词器ik
文章目录 使用standard analysis对英文进行分词使用standard analysis对中文进行分词安装插件对中文进行友好分词-ik中文分词器下载安装和配置IK分词器使用ik_smart分词器使用ik_max_word分词器 借助Nginx实现ik分词器自定义分词网络新词 ES官方文档Text Analysis 使用standard…...
ITSS信息技术服务运行维护标准符合性证书申请详解及流程
ITSS信息技术服务运行维护标准符合性证书 认证介绍 ITSS(InformationTechnologyServiceStandards,信息技术服务标准,简称ITSS)是一套成体系和综合配套的信息技术服务标准库,全面规范了IT服务产品及其组成要素,用于指导实施标准化…...
Inbound marketing的完美闭环:将官网作为营销枢纽,从集客进化为入站
Inbound marketing即入站营销的运作方式不同于付费广告,你需要不断地投入才能获得持续的访问量。而你的生意表达内容一经创建、发布,就能远远不断地带来流量。 Inbound marketing也被翻译作集客营销,也就是美国知名的营销SaaS企业hubspot所主…...
SQL On Pandas最佳实践
SQL On Pandas最佳实践 1、PandaSQL1.1、PandaSQL简介1.2、Pandas与PandaSQL解决方案对比1.3、PandaSQL支持的窗口函数1.4、PandaSQL综合使用案例2、DuckDB2.1、DuckDB简介2.2、SQL操作(SQL On Pandas)2.3、逻辑SQL(DSL on Pandas)2.4、DuckDB on Apache Arrow2.5、DuckDB …...
如何批量给视频添加logo水印?
如果你想为自己的视频添加图片水印,以增强视频的辨识度和个性化,那么你可以使用固乔剪辑助手软件来实现这一需求。下面就是详细的操作步骤: 1.下载并打开固乔剪辑助手软件,这是一款简单易用的视频剪辑软件,功能丰富&am…...
数据挖掘和大数据的区别
数据挖掘 一般用于对企业内部系统的数据库进行筛选、整合和分析。 操作对象是数据仓库,数据相对有规律,数据量较少。 大数据 一般指对互联网中杂乱无章的数据进行筛选、整合和分析。 操作对象一般是互联网的数据,数据无规律,…...
Go之流程控制大全: 细节、示例与最佳实践
引言 在计算机编程中,流程控制是核心的组成部分,它决定了程序应该如何根据给定的情况执行或决策。以下是Go语言所支持的流程控制结构的简要概览: 流程控制类型代码if-else条件分支if condition { } else { }for循环for initialization; con…...
FLStudio2024最新破解版注册机
水果音乐制作软件FLStudio是一款功能强大的音乐创作软件,全名:Fruity Loops Studio。水果音乐制作软件FLStudio内含教程、软件、素材,是一个完整的软件音乐制作环境或数字音频工作站... FL Studio21简称FL 21,全称 Fruity Loops Studio 21,因此国人习惯叫…...
【Overload游戏引擎细节分析】standard材质Shader
提示:Shader属于GPU编程,难写难调试,阅读本文需有一定的OpenGL基础,可以写简单的Shader,不适合不会OpenGL的朋友 一、Blinn-Phong光照模型 Blinn-Phong光照模型,又称为Blinn-phong反射模型(Bli…...
Leetcode—7.整数反转【中等】
2023每日刷题(十) Leetcode—7.整数反转 关于为什么要设long变量 参考自这篇博客 long可以表示-2147483648而且只占4个字节,所以能满足题目要求 复杂逻辑版实现代码 int reverse(int x){int arr[32] {0};long y;int flag 1;if(x <…...
lua-web-utils和proxy设置示例
以下是一个使用lua-web-utils和proxy的下载器程序: -- 首先安装lua-web-utils库 local lwu require "lwu" -- 获取服务器 local function get_proxy()local proxy_url "duoipget_proxy"local resp, code, headers, err lwu.fetch(proxy_…...
分享一下在微信小程序里怎么添加储值卡功能
在微信小程序中添加储值卡功能,可以让消费者更加便捷地管理和使用储值卡,同时也能增加商家的销售收入。下面是一篇关于如何在微信小程序中添加储值卡功能的软文。 标题:微信小程序添加储值卡功能,便捷与高效并存 随着科技的不断发…...
2023高频前端面试题-http
1. HTTP有哪些⽅法? HTTP 1.0 标准中,定义了3种请求⽅法:GET、POST、HEAD HTTP 1.1 标准中,新增了请求⽅法:PUT、PATCH、DELETE、OPTIONS、TRACE、CONNECT 2. 各个HTTP方法的具体作用是什么? 方法功能G…...
图像识别在自动驾驶汽车中的多传感器融合技术
摘要: 介绍文章的主要观点和发现。 引言: 自动驾驶汽车的兴起和重要性。多传感器融合技术在自动驾驶中的关键作用。 第一部分:图像识别技术 图像识别的基本原理。图像传感器和摄像头在自动驾驶中的应用。深度学习和卷积神经网络ÿ…...
Kafka To HBase To Hive
目录 1.在HBase中创建表 2.写入API 2.1普通模式写入hbase(逐条写入) 2.2普通模式写入hbase(buffer写入) 2.3设计模式写入hbase(buffer写入) 3.HBase表映射至Hive中 1.在HBase中创建表 hbase(main):00…...
python pandas.DataFrame 直接写入Clickhouse
import pandas as pd import sqlalchemy from clickhouse_sqlalchemy import Table, engines from sqlalchemy import create_engine, MetaData, Column import urllib.parsehost 1.1.1.1 user default password default db test port 8123 # http连接端口 engine create…...
德语中第二虚拟式在主动态的形式,柯桥哪里可以学德语
德语中第二虚拟式在主动态的形式 1. 对于大多数的动词,一般使用这样的一般现在时时态: wrde 动词原形 例句:Wenn es nicht so viel kosten wrde, wrde ich mir ein Haus am Meer kaufen. 如果不花这么多钱,我会在海边买一栋房…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
网页端 js 读取发票里的二维码信息(图片和PDF格式)
起因 为了实现在报销流程中,发票不能重用的限制,发票上传后,希望能读出发票号,并记录发票号已用,下次不再可用于报销。 基于上面的需求,研究了OCR 的方式和读PDF的方式,实际是可行的ÿ…...
