当前位置: 首页 > news >正文

图论基础和表示

一、概念及其介绍

图论(Graph Theory)是离散数学的一个分支,是一门研究图(Graph)的学问。

图是用来对对象之间的成对关系建模的数学结构,由"节点"或"顶点"(Vertex)以及连接这些顶点的"边"(Edge)组成。

值得注意的是,图的顶点集合不能为空,但边的集合可以为空。图可能是无向的,这意味着图中的边在连接顶点时无需区分方向。否则,称图是有向的。下面左图是一个典型的无向图结构,右图则属于有向图。本章节介绍的图都是无向图。

图的分类:无权图和有权图,连接节点与节点的边是否有数值与之对应,有的话就是有权图,否则就是无权图。

图的连通性:在图论中,连通图基于连通的概念。在一个无向图 G 中,若从顶点 i 到顶点 j 有路径相连(当然从j到i也一定有路径),则称 i 和 j 是连通的。如果 G 是有向图,那么连接i和j的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。如果此图是有向图,则称为强连通图(注意:需要双向都有路径)。图的连通性是图的基本性质。

完全图:完全是一个简单的无向图,其中每对不同的顶点之间都恰连有一条边相连。

自环边:一条边的起点终点是一个点。

平行边:两个顶点之间存在多条边相连接。

二、适用说明

图可用于在物理、生物、社会和信息系统中建模许多类型的关系和过程,许多实际问题可以用图来表示。因此,图论成为运筹学、控制论、信息论、网络理论、博弈论、物理学、化学、生物学、社会科学、语言学、计算机科学等众多学科强有力的数学工具。在强调其应用于现实世界的系统时,网络有时被定义为一个图,其中属性(例如名称)之间的关系以节点和或边的形式关联起来。

三、图的表达形式

邻接矩阵:1 表示相连接,0 表示不相连。

邻接表:只表达和顶点相连接的顶点信息

邻接表适合表示稀疏图 (Sparse Graph)

邻接矩阵适合表示稠密图 (Dense Graph)

Java 实例代码

(1) 邻接矩阵

src/runoob/graph/DenseGraph.java 文件代码:

package runoob.graph;/*** 邻接矩阵*/
public class DenseGraph {// 节点数private int n;// 边数private int m;// 是否为有向图private boolean directed;// 图的具体数据private boolean[][] g;// 构造函数public DenseGraph( int n , boolean directed ){assert n >= 0;this.n = n;this.m = 0;this.directed = directed;// g初始化为n*n的布尔矩阵, 每一个g[i][j]均为false, 表示没有任和边// false为boolean型变量的默认值g = new boolean[n][n];}// 返回节点个数public int V(){ return n;}// 返回边的个数public int E(){ return m;}// 向图中添加一个边public void addEdge( int v , int w ){assert v >= 0 && v < n ;assert w >= 0 && w < n ;if( hasEdge( v , w ) )return;g[v][w] = true;if( !directed )g[w][v] = true;m ++;}// 验证图中是否有从v到w的边boolean hasEdge( int v , int w ){assert v >= 0 && v < n ;assert w >= 0 && w < n ;return g[v][w];}
}

(2)邻接表

src/runoob/graph/SparseGraph.java 文件代码:

package runoob.graph;import java.util.Vector;/*** 邻接表*/
public class SparseGraph {// 节点数private int n;// 边数private int m;// 是否为有向图private boolean directed;// 图的具体数据private Vector<Integer>[] g;// 构造函数public SparseGraph( int n , boolean directed ){assert n >= 0;this.n = n;this.m = 0;  this.directed = directed;// g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边g = (Vector<Integer>[])new Vector[n];for(int i = 0 ; i < n ; i ++)g[i] = new Vector<Integer>();}// 返回节点个数public int V(){ return n;}// 返回边的个数public int E(){ return m;}// 向图中添加一个边public void addEdge( int v, int w ){assert v >= 0 && v < n ;assert w >= 0 && w < n ;g[v].add(w);if( v != w && !directed )g[w].add(v);m ++;}// 验证图中是否有从v到w的边boolean hasEdge( int v , int w ){assert v >= 0 && v < n ;assert w >= 0 && w < n ;for( int i = 0 ; i < g[v].size() ; i ++ )if( g[v].elementAt(i) == w )return true;return false;}
}

相关文章:

图论基础和表示

一、概念及其介绍 图论(Graph Theory)是离散数学的一个分支&#xff0c;是一门研究图(Graph)的学问。 图是用来对对象之间的成对关系建模的数学结构&#xff0c;由"节点"或"顶点"(Vertex&#xff09;以及连接这些顶点的"边"&#xff08;Edge&a…...

STM32 音频ADC转wav格式

STM32 音频ADC DAC测试方法_stm32 adc 音频-CSDN博客 STM32--vs1053 WAV录音实现&#xff08;保存在SD卡&#xff09;_vs1053 多字节读取-CSDN博客 单片机内部AD实现录音wav文件_adc语音信号采样_天外飞仙CUG的博客-CSDN博客 PCM编码格式_pcm格式-CSDN博客 用ADC编码PCM数据…...

面试中经常问道的问题二

深入理解前端跨域方法和原理 前言 受浏览器同源策略的限制&#xff0c;本域的js不能操作其他域的页面对象&#xff08;比如DOM&#xff09;。但在安全限制的同时也给注入iframe或是ajax应用上带来了不少麻烦。所以我们要通过一些方法使本域的js能够操作其他域的页面对象或者使…...

SQL UPDATE 语句(更新表中的记录)

SQL UPDATE 语句 UPDATE 语句用于更新表中已存在的记录。 还可以使用AND或OR运算符组合多个条件。 SQL UPDATE 语法 具有WHERE子句的UPDATE查询的基本语法如下所示&#xff1a; UPDATE table_name SET column1 value1, column2 value2, ... WHERE conditi…...

js节流和防抖

节流&#xff08;throttle&#xff09;和防抖&#xff08;debounce&#xff09;是为了解决函数频繁触发而引发性能问题的两种优化方法。 节流&#xff1a; 指定一个时间间隔&#xff0c;在时间间隔内只执行一次函数&#xff0c;即在一段时间内&#xff0c;多次触发函数只执行一…...

权限系统设计(转载)

1 为什么需要权限管理 2 权限模型 2.1 权限设计 2.2 为什么需要角色 2.3 权限模型的演进 2.4 用户划分 2.5 理想的RBAC模型 3 权限系统表设计 3.1 标准RBAC模型表设计 3.2 理想RBAC模型表设计 4 结语 1 为什么需要权限管理 日常工作中权限的问题时时刻刻伴随着我们&a…...

【机器学习合集】标准化与池化合集 ->(个人学习记录笔记)

文章目录 标准化与池化1. 标准化/归一化1.1 归一化归一化的作用 1.2 标准化批标准化方法 Batch Normailzation标准化方法的对比自动学习标准化方法 2. 池化2.1 池化的作用2.2 常见的池化方法2.3 池化方法的差异2.4 池化的必要性 标准化与池化 1. 标准化/归一化 1.1 归一化 归…...

Dockerfile文件自动化生成R4L镜像

Dockerfile文件自动化生成R4L镜像的步骤 1、安装Docker&#xff1a;2、使用Dockerfile一键生成镜像&#xff1a;3、查看生成的Docker镜像&#xff1a;4、删除Docker镜像&#xff1a;5、生成Docker容器&#xff1a;6、查看容器7、删除容器 1、安装Docker&#xff1a; curl -fsS…...

基于SSM的居家养老系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…...

[C#基础训练]FoodRobot食品管理部分代码-2

参考代码&#xff1a; using System; using System.Collections.Generic;namespace FoodRobotDemo {public class FoodInfo{ public string Name { get; set; } public int Id { get; set; } public int Count { get; set; }}public class FoodRobot{private …...

docker部署rabbitmq的坑

背景 今天用docker部署rabbitmq&#xff0c;启动都一起正常&#xff0c;但是当访问15672端口时&#xff0c;不能加载出页面。 排查 1.防火墙是否开启 ufw status2.ip是否能ping通 ping 192.168.x.x3.检查docker日志 docker psdocker logs -f 容器id4.进入容器&#xff0c…...

【python VS vba(系列2)】 python和vba读写EXCEL文件的方式比较 (建设ing)

目录 1 用VBA读写EXCEL文件 1.1 用VBA读写&#xff0c;本工作簿workbook里的特定sheet的特定内容 1.1.1 EXCEL表内内容访问 1.1.2 注意点 1.1.3 代码 1.2 用VBA读写本工作簿workbook里的所有sheet的内容 1.2.1 麻烦之处 1.2.2 方法&#xff0c;如何指定EXCEL里的内容…...

小程序 swiper滑动 层叠滑动效果

整个红色区域为可滑动区域&#xff0c;数字1区域为展示区域&#xff0c;数字2为下一个展示模块 <scroll-view class"h_scroll_horizontal" enhanced"ture" bind:touchend"touchEnd" bind:touchstart"touchStart"><view clas…...

【20年VIO梳理】

19-20年VIO 梳理 1. 开源代码介绍&#xff1a; DSM2. FMD Stereo SLAM&#xff1a;融合MVG和直接方法&#xff0c;实现准确&#xff0c;快速的双目SLAM3. 基于VINS-Mono开发的SPVIS4. 改进&#xff1a;一种基于光流的动态环境移动机器人定位方案5. PVIO:基于先验平面约束的高效…...

Java Object类详解

Object 是 java 类库中的一个特殊类&#xff0c;也是所有类的父类。也就是说&#xff0c;Java 允许把任何类型的对象赋给 Object 类型的变量。当一个类被定义后&#xff0c;如果没有指定继承的父类&#xff0c;那么默认父类就是 Object 类。因此&#xff0c;以下两个类表示的含…...

Unity 中忽略图片透明度的 Image 组件的修改版本

只需将此组件添加到画布中的空对象即可。请注意&#xff0c;仅支持简单 图像类型。 using System.Collections.Generic; using UnityEngine; using UnityEngine.Sprites; using UnityEngine.UI; #if UNITY_2017_4 || UNITY_2018_2_OR_NEWER using UnityEngine.U2D; #endif#if U…...

hibernate源码(1)--- schema创建

sessionFactory 配置项&#xff1a; hibernate的核心是sessionFactory&#xff0c;那我们看看如何构建session Factory。 参考官网&#xff1a; plugins {id("java") } group "com.atai.hibernatespy" version "1.0-SNAPSHOT" repositories…...

数学与经济管理

数学与经济管理&#xff08;2-4分&#xff09; 章节概述 最小生成树问题 答案&#xff1a;23 讲解地址&#xff1a;74-最小生成树问题_哔哩哔哩_bilibili 最短路径问题 答案&#xff1a;81 讲解地址&#xff1a;75-最短路径问题_哔哩哔哩_bilibili 网络与最大流量问题 真题 讲解…...

自动化测试系列 —— UI自动化测试

UI 测试是一种测试类型&#xff0c;也称为用户界面测试&#xff0c;通过该测试&#xff0c;我们检查应用程序的界面是否工作正常或是否存在任何妨碍用户行为且不符合书面规格的 BUG。了解用户将如何在用户和网站之间进行交互以执行 UI 测试至关重要&#xff0c;通过执行 UI 测试…...

眨个眼就学会了PixiJS

本文简介 带尬猴&#xff0c;我是德育处主任 当今的Web开发中&#xff0c;图形和动画已经成为了吸引用户注意力的重要手段之一。而 Pixi.js 作为一款高效、易用的2D渲染引擎&#xff0c;已经成为了许多开发者的首选&#xff08;我吹的&#xff09;。本文将为工友们介绍PixiJS的…...

WORD中的表格内容回车行距过大无法调整行距

word插入表格&#xff0c;编辑内容&#xff0c;换行遇到如下问题&#xff1a; 回车后行距过大&#xff0c;无法调整行距。 解决方法&#xff08;并行&#xff09;&#xff1a; 方法1&#xff1a;选中要调整的内容&#xff0c;菜单路径&#xff1a;“编辑-清除-格式” 方法2&am…...

MySQL 高级函数整理

目录 MySQL 高级函数VERSIONIFCASE参考文章 MySQL 高级函数 函数描述BIN返回数字的二进制表示BINARY将值转换为二进制字符串CASE遍历条件并在满足第一个条件时返回一个值CAST将&#xff08;任何类型的&#xff09;值转换为指定的数据类型COALESCE返回列表中的第一个非空值CONN…...

UG\NX二次开发 连接曲线、连结曲线 UF_CURVE_auto_join_curves

文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,里海BlockUI专栏,C\C++-CSDN博客 简介 UG\NX二次开发 连接曲线、连结曲线 UF_CURVE_auto_join_curves 效果 代码 #include "me.hpp" extern DllExport void ufusr(char* param, int* returnC…...

python爬虫入门(四)爬取猫眼电影排行(使用requests库和正则表达式)

本例中&#xff0c;利用 requests 库和正则表达式来抓取猫眼电影 TOP100 的相关内容。 1.目标 提取出猫眼电影 TOP100 的电影名称、时间、评分、图片等信息&#xff0c;提取的站点 URL 为 http://maoyan.com/board/4&#xff0c;提取的结果会以文件形式保存下来。 2.抓取分析…...

Mybatis-Plus CRUD

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; Mybatis-Plus CRUD 通用 Service CRUD 封装 IService 接口&#xff0c;进一步封装 CRUD 采用 get 查询、remove 删除 、list 查询集合、page 分页的前缀命名方式区分 …...

【强化学习】08——规划与学习(采样方法|决策时规划)

文章目录 优先级采样Example1 Prioritized Sweepingon Mazes局限性及改进 期望更新和采样更新不同分支因子下的表现 轨迹采样总结实时动态规划Example2 racetrack 决策时规划启发式搜索Rollout算法蒙特卡洛树搜索 参考 先做个简单的笔记整理&#xff0c;以后有时间再补上细节 …...

(链表) 25. K 个一组翻转链表 ——【Leetcode每日一题】

❓ 25. K 个一组翻转链表 难度&#xff1a;困难 给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那么请将最后剩余的节点保…...

VisualStudio[WPF/.NET]基于CommunityToolkit.Mvvm架构开发

一、创建 "WPF应用程序" 新项目 项目模板选择如下&#xff1a; 暂时随机填一个目标框架&#xff0c;待会改&#xff1a; 二、修改“目标框架” 双击“解决方案资源管理器”中<项目>CU-APP, 打开<项目工程文件>CU-APP.csproj, 修改目标框架TargetFramew…...

深度学习_5_模型拟合_梯度下降原理

需求: 想要找到一条直线&#xff0c;能更好的拟合这一些点 如何确定上述直线就是最优解呢&#xff1f; 由计算机算出所有点与我们拟合直线的误差&#xff0c;常见的是均方误差 例如&#xff1a;P1与直线之间的误差为e1 将P1坐标带入直线并求误差得&#xff1a; 推广到所有点&a…...

大模型时代,AI如何成为数实融合的驱动力?

10月25日&#xff0c;百度APP、百家号联合中兴通讯举办的“时代的增量“主题沙龙第二期在北京顺利召开。本期沙龙围绕“数实融合新视角”邀请学界、业界、媒体从业者等领域专家出席&#xff0c;以产学研相结合的视角深入探讨数实融合的最新技术趋势&#xff0c;并围绕数实融合在…...