当前位置: 首页 > news >正文

数学与经济管理

数学与经济管理(2-4分)

章节概述

最小生成树问题

答案:23

讲解地址:74-最小生成树问题_哔哩哔哩_bilibili

最短路径问题

答案:81

讲解地址:75-最短路径问题_哔哩哔哩_bilibili

网络与最大流量问题

真题

讲解地址:76-网络与最大流量问题_哔哩哔哩_bilibili

真题

讲解地址:76-网络与最大流量问题_哔哩哔哩_bilibili

线性规划

真题

真题

真题

讲解地址:77-线性规划_哔哩哔哩_bilibili

真题

答案:34

真题

暴力出奇迹(动态规划)

真题

真题

答案:17万

骚戴理解:这里我用的穷举法,一个个列出来,这个方法是最笨最容易出错的,但是是最简单的方法,同时注意在穷举的时候融入控制变量法的思想

真题

真题

答案:B

骚戴理解:这个地方采用的就是暴力破解,把甲乙丙三种组合一个个列举出来,然后去计算总收益

讲解地址:78-动态规划_哔哩哔哩_bilibili

真题

答案:B

讲解地址:78-动态规划_哔哩哔哩_bilibili

真题

答案:B

讲解地址:78-动态规划_哔哩哔哩_bilibili

矩阵化简

真题

真题

排队论

答案:C

讲解地址:79-排队论_哔哩哔哩_bilibili

博弈论

真题

答案:囚犯A坦白,囚犯B抵赖

讲解地址:80-博弈论_哔哩哔哩_bilibili

真题

答案:甲选择低价,乙选择低价

骚戴理解:这里别搞混淆了,每一栏的两个数字分别代表甲的收益和乙的收益,首先捋清楚这一点,这样的题目很容易晕的

讲解地址:80-博弈论_哔哩哔哩_bilibili

状态转移矩阵

真题

真题

答案:C

骚戴理解:首先注意这个地方要算两次,因为是两个月以后,其次注意这里可以套用数学公式

讲解地址:81-状态转移矩阵_哔哩哔哩_bilibili

真题

答案:D

讲解地址:81-状态转移矩阵_哔哩哔哩_bilibili

不确定型决策

骚戴理解:

  • 如果上面的决策矩阵采用乐观主义准则(大中取大),那就从每个策略的最大值中取最大值,也就是【500,300,300】,即取500,,所以选择积极策略
  • 如果是悲观准则(小中取大),那就从每个策略的最小值中取最大值,也就是【50,100,200】中的最大值,即取200,所以选择保守策略
  • 如果是等可能准则,那就要计算了,三种策略对应的计算公式如下所示,可以看到,其实最终也就是把这些值加起来看看谁最大就选谁,也就是【700,600,750】,所以选择保守策略
    • 积极:(50+150+500)*(1/3)= 700 *(1/3)
    • 稳健:(100+200+300)*(1/3) = 600 *(1/3)
    • 保守:(300+250+200)*(1/3) = 750 *(1/3)
  • 如果是后悔准则(最大后悔值选最小),那么需要还出下面的这个后悔值矩阵才行,然后在这个矩阵里面的最大后悔值中选最小值,然后从策略的角度来看,也就是【250,200,300】中取最小值,即取200,所以选择稳健策略,那这个后悔值怎么得出来的呢?这个后悔值其实就是一列列的看,然后取最大的值作为基础,计算其他的和这个基数的差值,差值就是后悔值,例如不景气这一列,最大值为300,那就是基数为300,然后其他的和基础的差值分别为250和200,那这些值就是对应的后悔值

讲解地址:82-不确定型决策_哔哩哔哩_bilibili

决策表与决策树

决策树

答案:水路

骚戴理解:这个题目首先会根据题目画出决策树,因为有的题目可能不给决策树,要自己画,其次就是要会求加权平均值,然后根据题目需求来决定是取最小值还是最大值,这里算的是成本,所以要取最小值,例如上面的这个题目的加权平均值如下所求

  • 水路:7000*0.75+(7000+90000*10%)*0.25=9250
  • 陆路:10000*0.75+10000*0.25 = 10000

决策表

答案:B

骚戴理解:这个就跟简单了,也是求加权平均值,然后根据题目需求来决定是取最小值还是最大值,这里是求价值,那自然是取最大值

  • A系统:95*35%+70*40%+85*25%=82.5
  • B系统:75*35%+95*40%+90*25%=86.75

真题

答案:C

骚戴理解:这个题目也一样是求加权平均值的,只是复用那里多了一个分支,这种情况用乘法即可,例如复用的情况计算加权平均值的公式:0.4*27.5+(0.6*0.2*31+0.6*0.8*49)=11+(3.72+23.52)=38.24

真题

答案:B

讲解地址:83-决策表与决策树_哔哩哔哩_bilibili

数学建模

建模过程

模型分析

模型校验

建模方法

真题

真题

答案:C

真题

答案:D

讲解地址:84-数学建模_哔哩哔哩_bilibili

无家可归

真题

真题

真题

真题

真题

真题

解析

此题考察蒙特卡洛算法的相关应用,属于常规高频考点。蒙特卡罗方法是一种统计模拟方法,其思想核心是通过模拟大量样本集或随机过程来近似实际问题对象。其名字来源于蒙特卡罗赌城,最初应用于20世纪40年代美国的曼哈顿原子弹计划,如今在数据分析和机器学习领域中有广泛的应用。蒙特卡罗方法的三个典型应用场景:近似计算不规则面积/体积/积分、模拟随机过程预测可能性结果区间范围、利用接受-拒绝采样进行对分布未知参数的统计推断

真题

真题

解析

此题考察数学建模的概念和特点,属于超纲低频考点。数学建模是利用数学方法解决实际问题的一种实践。数学建模的过程包括抽象、简化、假设、引入变量等步骤,建立数学模型,然后用先进的数学方法和计算机技术求解。数学模型是对于现实世界的一个特定对象、一个特定目的,根据特有的内在规律,作出一些必要的假设,运用适当的数学工具得到一个数学结构。对不同的问题,有不同的评价标准,数学模型难有统一的普适标准来评价。

真题

相关文章:

数学与经济管理

数学与经济管理(2-4分) 章节概述 最小生成树问题 答案:23 讲解地址:74-最小生成树问题_哔哩哔哩_bilibili 最短路径问题 答案:81 讲解地址:75-最短路径问题_哔哩哔哩_bilibili 网络与最大流量问题 真题 讲解…...

自动化测试系列 —— UI自动化测试

UI 测试是一种测试类型,也称为用户界面测试,通过该测试,我们检查应用程序的界面是否工作正常或是否存在任何妨碍用户行为且不符合书面规格的 BUG。了解用户将如何在用户和网站之间进行交互以执行 UI 测试至关重要,通过执行 UI 测试…...

眨个眼就学会了PixiJS

本文简介 带尬猴,我是德育处主任 当今的Web开发中,图形和动画已经成为了吸引用户注意力的重要手段之一。而 Pixi.js 作为一款高效、易用的2D渲染引擎,已经成为了许多开发者的首选(我吹的)。本文将为工友们介绍PixiJS的…...

WORD中的表格内容回车行距过大无法调整行距

word插入表格,编辑内容,换行遇到如下问题: 回车后行距过大,无法调整行距。 解决方法(并行): 方法1:选中要调整的内容,菜单路径:“编辑-清除-格式” 方法2&am…...

MySQL 高级函数整理

目录 MySQL 高级函数VERSIONIFCASE参考文章 MySQL 高级函数 函数描述BIN返回数字的二进制表示BINARY将值转换为二进制字符串CASE遍历条件并在满足第一个条件时返回一个值CAST将(任何类型的)值转换为指定的数据类型COALESCE返回列表中的第一个非空值CONN…...

UG\NX二次开发 连接曲线、连结曲线 UF_CURVE_auto_join_curves

文章作者:里海 来源网站:王牌飞行员_里海_里海NX二次开发3000例,里海BlockUI专栏,C\C++-CSDN博客 简介 UG\NX二次开发 连接曲线、连结曲线 UF_CURVE_auto_join_curves 效果 代码 #include "me.hpp" extern DllExport void ufusr(char* param, int* returnC…...

python爬虫入门(四)爬取猫眼电影排行(使用requests库和正则表达式)

本例中,利用 requests 库和正则表达式来抓取猫眼电影 TOP100 的相关内容。 1.目标 提取出猫眼电影 TOP100 的电影名称、时间、评分、图片等信息,提取的站点 URL 为 http://maoyan.com/board/4,提取的结果会以文件形式保存下来。 2.抓取分析…...

Mybatis-Plus CRUD

💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Mybatis-Plus CRUD 通用 Service CRUD 封装 IService 接口,进一步封装 CRUD 采用 get 查询、remove 删除 、list 查询集合、page 分页的前缀命名方式区分 …...

【强化学习】08——规划与学习(采样方法|决策时规划)

文章目录 优先级采样Example1 Prioritized Sweepingon Mazes局限性及改进 期望更新和采样更新不同分支因子下的表现 轨迹采样总结实时动态规划Example2 racetrack 决策时规划启发式搜索Rollout算法蒙特卡洛树搜索 参考 先做个简单的笔记整理,以后有时间再补上细节 …...

(链表) 25. K 个一组翻转链表 ——【Leetcode每日一题】

❓ 25. K 个一组翻转链表 难度:困难 给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。 k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保…...

VisualStudio[WPF/.NET]基于CommunityToolkit.Mvvm架构开发

一、创建 "WPF应用程序" 新项目 项目模板选择如下&#xff1a; 暂时随机填一个目标框架&#xff0c;待会改&#xff1a; 二、修改“目标框架” 双击“解决方案资源管理器”中<项目>CU-APP, 打开<项目工程文件>CU-APP.csproj, 修改目标框架TargetFramew…...

深度学习_5_模型拟合_梯度下降原理

需求: 想要找到一条直线&#xff0c;能更好的拟合这一些点 如何确定上述直线就是最优解呢&#xff1f; 由计算机算出所有点与我们拟合直线的误差&#xff0c;常见的是均方误差 例如&#xff1a;P1与直线之间的误差为e1 将P1坐标带入直线并求误差得&#xff1a; 推广到所有点&a…...

大模型时代,AI如何成为数实融合的驱动力?

10月25日&#xff0c;百度APP、百家号联合中兴通讯举办的“时代的增量“主题沙龙第二期在北京顺利召开。本期沙龙围绕“数实融合新视角”邀请学界、业界、媒体从业者等领域专家出席&#xff0c;以产学研相结合的视角深入探讨数实融合的最新技术趋势&#xff0c;并围绕数实融合在…...

MS COCO数据集的评价标准以及不同指标的选择推荐(AP、mAP、MS COCO、AR、@、0.5、0.75、1、目标检测、评价指标)

目标检测模型性能衡量指标、MS COCO 数据集的评价标准以及不同指标的选择推荐 0. 引言 0.1 COCO 数据集评价指标 目标检测模型通过 pycocotools 在验证集上会得到 COCO 的评价列表&#xff0c;具体参数的含义是什么呢&#xff1f; 0.2 目标检测领域常用的公开数据集 PASCAL …...

css实现鼠标多样化

cursor pointer&#xff1a; 手型default&#xff1a; 箭头text&#xff1a; 文本输入光标move&#xff1a; …...

21.2 Python 使用Scapy实现端口探测

Scapy 是一款使用纯Python编写的跨平台网络数据包操控工具&#xff0c;它能够处理和嗅探各种网络数据包。能够很容易的创建&#xff0c;发送&#xff0c;捕获&#xff0c;分析和操作网络数据包&#xff0c;包括TCP&#xff0c;UDP&#xff0c;ICMP等协议&#xff0c;此外它还提…...

Qt设计一个自定义的登录框窗口

今天写了一个Qt登录、注册的小demo&#xff0c;后续完善会连接MySQL使用&#xff0c;过几天写完我会放在github上。 主要页面&#xff1a; 动态演示&#xff1a; 写完这个界面后&#xff0c;我终于知道了Qt为什么几乎没什么好看的窗口设计了&#xff0c;随便写一个简单大方的登…...

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P: execute row exchanges becomes PA LU for any invertible A Permutations P identity matrix with reordered rows mn (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations 对于nxn矩阵存在着n!个置换矩阵 , 2. Transpose: 2.…...

[数据结构】二叉树

1.概念 一棵二叉树是结点的一个有限集合&#xff0c;该集合&#xff1a; 1. 或者为空 2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成 从上图我们可以发现&#xff1a; 1.二叉树不存在大于2 的度 2.二叉树的子树有左右之分&#xff0c;次序不能颠倒。是有…...

idea 中配置 maven

前文叙述&#xff1a; 配置 maven 一共要设置两个地方&#xff1a;1、为当前项目设置2、为新项目设置maven 的下载和安装可参考我之前写过的文章&#xff0c;具体的配置文章中也都有讲解。1、为当前项目进行 maven 配置 配置 VM Options: -DarchetypeCataloginternal2、为新项…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...