Pytorch代码入门学习之分类任务(三):定义损失函数与优化器
一、定义损失函数
1.1 代码
criterion = nn.CrossEntropyLoss()
1.2 损失函数简介
神经网络的学习通过某个指标表示目前的状态,然后以这个指标为基准,寻找最优的权重参数。神经网络以某个指标为线索寻找最优权重参数,该指标称为损失函数(loss function)。这个损失函数可以使用任意函数, 但一般用均方误差和交叉熵误差等。损失函数是表示神经网络性能的“恶劣程度”的指标,即当前的神经网络对监督数据在多大程度上不拟合、不一致。这个值越低,表示网络的学习效果越好。
但是,如果loss很低的话,可能出现过拟合现象。
1.3 交叉熵误差(cross entropy error)
交叉熵误差如下式所示:
其中,log表示以e为底数的自然对数(log e );yk指神经网络的输出,tk是正确解标签。并且,tk中只有正确解标签的索引为1,其他均为0(one-hot表示)。 因此,上式实际上只计算对应正确解标签的输出的自然对数。比如,假设正确解标签的索引是“2”,与之对应的神经网络的输出是0.6,则交叉熵误差 是−log 0.6 = 0.51;若“2”对应的输出是0.1,则交叉熵误差为−log 0.1 = 2.30。因此,交叉熵误差的值是由正确解标签所对应的输出结果决定的。
交叉熵误差函数需要两个参数,第一个是输入参数(预测值),第二个是正确值。
二、定义优化器
2.1 代码
import torch.optim as optim
optimizer = optim.SGD(net.parameters(),lr=0.001,momentum=0.9)
2.2 构造优化器
optimizer = optim.SGD(net.parameters(),lr=0.001,momentum=0.9):第一个参数是需要更新的参数,第二个参数是指学习率(指每次更新学习率下降的大小),第三个参数为动量;
2.3 随机梯度下降法(SGD)
用数学式子可以把SGD写为如下的式:
其中,W记为需要更新的权重参数,是指损失函数关于W的梯度,
表示学习率,一般情况下会取为0.01或0.001这类事先决定好的值。式子中的“箭头”表示用右边的值更新左边的值。
SGD较为简单,且容易实现,但是在解决某些问题时可能没有效率。SGD是朝着梯度方向只前进一定距离的简单方法,且梯度的方法并没有指向最小值的方向。
参考:004 第一个分类任务2_哔哩哔哩_bilibili
相关文章:
Pytorch代码入门学习之分类任务(三):定义损失函数与优化器
一、定义损失函数 1.1 代码 criterion nn.CrossEntropyLoss() 1.2 损失函数简介 神经网络的学习通过某个指标表示目前的状态,然后以这个指标为基准,寻找最优的权重参数。神经网络以某个指标为线索寻找最优权重参数,该指标称为损失函数&am…...

【Linux】安装VMWare虚拟机(安装配置)和配置Windows Server 2012 R2(安装配置连接vm虚拟机)以及环境配置
前言: 一、操作系统简介 1、什么是操作系统 操作系统是一种软件,它管理计算机系统的硬件和软件资源,并提供给用户和应用程序接口,使它们能够与计算机系统交互和运行。操作系统负责调度和分配系统资源,例如处理器、内存…...

Python入口顶部人体检测统计进出人数
程序示例精选 Python入口顶部人体检测统计进出人数 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对《Python入口顶部人体检测统计进出人数》编写代码,代码整洁,规则&a…...
移动端自动化-Appium元素定位
文章目录 Appium元素定位第一类:属性定位第二类:路径定位 常见问题理解appium server 和 appium inspector 以及 appium-python-client的关系 appium是跨平台的,支持OSX,Windows以及Linux系统。它允许测试人员在不同的平台&#x…...

menuconfig 图形化配置原理说明三
一. 简介 本文继续简单了解一下,uboot的图形化配置原理。具体了解 Kconfig语法。 之前文章了解了几个 Kconfig语法。地址如下: menuconfig 图形化配置原理说明二-CSDN博客 二. menuconfig 图形化配置之 Kconfig语法 1. config 条目 顶层 Kconfig …...

Ansible简介
环境 控制节点:Ubuntu 22.04Ansible 2.10.8管理节点:CentOS 8 组成 Ansible环境主要由三部分组成: 控制节点(Control node):安装Ansible的节点,在此节点上运行Ansible命令管理节点ÿ…...

Tomcat+nginx负载均衡和动静分离
Nginx实现负载均衡和动静分离的原理 Nginx实现负载均衡是通过反向代理实现Nginx服务器作为前端,Tomcat服务器作为后端,web页面请求由Nginx服务来进行转发。 但是不是把所有的web请求转发,而是将静态页面请求Ncinx服务器自己来处理,…...
全景环视AVM标定
目录 一、前言 二、鱼眼模型 三、标定流程 四、角点提取 4.1 亚像素坐标计算...
【JavaScript】leetcode链表相关题解
【JavaScript】leetcode链表相关题解 一、什么是链表?二、Javascript中的链表三、leetcode相关链表2.两数相加237.删除链表中的节点206.反转链表 💎个人主页: 阿选不出来 💎个人简介: 大三学生,热爱Web前端,随机掉落学…...

洞察运营机会的数据分析利器
这套分析方法包括5个分析工具: 用“描述性统计”来快速了解数据的整体特点。用“变化分析”来寻找数据的问题和突破口。用“指标体系”来深度洞察变化背后的原因。用“相关性分析”来精确判断原因的影响程度。用“趋势预测”来科学预测未来数据的走势,...

使用Python实现文字的声音播放
winsound 是 Python 的一个内置模块,它提供了访问 Windows 操作系统的声音播放功能的接口。这个模块可以用来播放简单的声音,例如提示音或者短促的音效。 # Author : 小红牛 # 微信公众号:WdPython import win32com.client import winsound#…...

gulp自动化构建
什么是Gulp? Gulp是一种前端开发过程中广泛使用的自动化构建工具,它是基于Node.js构建的,能够极大地提高开发效率和代码质量。Gulp的主要功能包括文件的压缩、合并、重命名等,同时它也支持文件监听和浏览器自动刷新等功能。使用Gulp&#x…...

java时间解析生成定时Cron表达式工具类
Cron表达式工具类CronUtil 构建Cron表达式 /****方法摘要:构建Cron表达式*param taskScheduleModel*return String*/public static String createCronExpression(TaskScheduleModel taskScheduleModel){StringBuffer cronExp new StringBuffer("");if(…...

JavaEE 网络原理——TCP的工作机制(末篇 其余TCP特点)
文章目录 一、滑动窗口二、流量控制三、拥堵控制四、延时应答五、捎带应答六、面向字节流七、异常情况八、总结 其余相关文章: JavaEE 网络原理——TCP的工作机制(中篇 三次握手和四次挥手) 本篇文章衔接的是前面两篇文章的内容,在这里继续解释 TCP 的内…...

【软件测试】了解JUnit单元测试框架常用注解
目录 1、认识JUnit 2、Junit中常见的注解 1、Test 2、Disabled 3、BeforeAll和AfterAll 4、BeforeEach和AfterEach 5、 ParameterizedTest:参数化 6、order 3、断言 1、断言相等【Assertions.assertEquals(预期,比较值)】;相等测试通…...

【广州华锐互动】三维全景3D消防科普展馆
在我们的日常生活中,火灾安全是一个不容忽视的重要问题。然而,由于缺乏对火灾的了解和应对技巧,许多人在面对火灾时往往感到无助和恐慌。为了解决这个问题,广州华锐互动开发了三维全景3D消防科普展馆,它是一个以虚拟现…...

某大型车企:加强汽车应用安全防护,开创智能网联汽车新篇章
某车企是安徽省最大的整车制造企业,致力于为全球消费者带来高品质汽车产品和服务体验,是国内最早突破百万销量的汽车自主品牌。该车企利用数字技术推动供应链网络的新型互动,加快数字化转型,持续进行场景创新、生态创新…...

LLVM学习笔记(50)
4.1.4. DAG合并与合法化 来自SelectionDAGBuilder的SelectionDAG输出还不能进行指令选择,必须通过额外的转换——显示在上图。在指令选择前应用的遍序列如下: 匹配一组节点,在有利时使用更简单的构造来替换它们,DAG合并遍优化Se…...
rpc入门笔记0x01
syntax "proto3"; // 这是个proto3的文件message HelloRequest{ // 创建数据对象string name 1; // name表示名称,编号是1 }生成python文件 安装grpcio和grpcio-tools库 pip install grpcio #安装grpc pip install grpcio-tools #安装grpc tools生成…...

web - Tomcat服务器
文章目录 目录 文章目录 前言 一 . CS和BS的异同 二 . 什么是Tomcat 二 . Tomcat安装 四 . Tomcat目录结构 bin目录: 用于存放二进制的可执行文件 config目录 server.xml:配置整个服务器信息。例如修改端口号。默认HTTP请求的端口号是:8080 lib目录 log…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...