当前位置: 首页 > news >正文

读图数据库实战笔记01_初识图

1. 图论

1.1. 起源于莱昂哈德·欧拉在1736年发表的一篇关于“哥尼斯堡七桥问题”的论文

1.2. 要解决这个问题,该图需要零个或两个具有奇数连接的节点

1.3. 任何满足这一条件的图都被称为欧拉图

1.4. 如果路径只访问每条边一次,则该图具有欧拉路径

1.5. 如果路径起点和终点相同,则该图具有欧拉回路,或称为欧拉环

2. 图

2.1. 顶点和边的集合

2.2. 示例

2.2.1. 路线图

2.2.2. 组织结构图

2.3. 当要思考的数据集含有大量高度相互关联的项时,也可以将该数据集描述为一个由相关事物组成的网络,这也是图的另一种说法

3. 顶点

3.1. 图中零条、一条或多条边经过的点

3.2. 节点或实体

4. 边

4.1. 图中两个顶点之间的关系

4.2. 关系、链接或连接

5. 图数据库

5.1. 一种数据存储引擎

5.1.1. 将包含顶点和边的基本图结构与持久化技术和遍历(查询)语言相结合

5.1.2. 以创建针对高度关联数据的存储和快速检索进行优化的数据库

5.2. 实体之间的关系与数据中的实体同等重要,甚至比后者更加重要

5.2.1. 用开发人员的话来说,边和顶点一样,都是“一等公民”

5.3. 可以用于更准确、更容易地表示和推理现实世界中的关系

5.4. 将数据存储为顶点(节点、组件)和边(关系)

5.5. Neo4j、Apache TinkerPop的Gremlin Server、JanusGraph和TigerGraph

5.6. 默认情况下,只有关系数据库和图数据库才具有将数据中的实体关联起来的功能

5.7. 优势

5.7.1. 递归查询

5.7.1.1. 组织中员工的汇报层次结构或者组织结构图
5.7.1.2. 会连续执行多次,反复调用自己,直到满足某种终止条件
5.7.1.3. 关系数据库不能很好地处理递归操作
5.7.1.4. 图数据库能够利用其表示丰富关系的能力,干净、高效地处理无边界递归查询
5.7.1.5. 嵌套查询和递归查询(如前面的层次结构示例所示)是图数据库擅长解答的疑问类型

5.7.2. 复合结果类型

5.7.2.1. 订单和产品报告示例
5.7.2.2. 能够返回包含不同数据类型的结果集
5.7.2.3. 关系数据库指定联合返回的结果集必须包含一致的列
5.7.2.3.1. 在稀疏数据的情况下,这不仅增加了返回的数据量,还降低了数据结构的描述性

5.7.3. 路径

5.7.3.1. 过河问题
5.7.3.2. 一组顶点和边的序列,描述遍历如何在图中移动

5.8. 请把注意力集中在图数据库如何优雅地处理关系数据库里的UNION操作上

5.9. 可以把图数据库设计得能够容忍不断发展变化的数据

5.10. 使用

5.10.1. 并不一定全部使用图数据库,也并不一定全部不使用图数据库

5.10.2. 不要害怕尝试用图数据库来解决问题的一部分

5.10.3. 使用图数据库的多模型方法(即混合使用关系数据库和图数据库)很常见

6. 比较

6.1.  键值数据库

6.1.1. 所有数据都由唯一标识符(键)和关联的数据对象(值)表示

6.1.2. Berkeley DB、RocksDB、Redis和Memcached

6.2. 列存储数据库

6.2.1. 面向列、宽列式数据库

6.2.2. 数据按列来存储

6.2.2.1. 可能每行有大量的列
6.2.2.2. 可能每行的列数不一样

6.2.3. Apache HBase、Azure Table Storage、Apache Cassandra和Google Cloud Bigtable

6.3. 文档数据库

6.3.1. 面向文档数据库

6.3.2. 将数据存储到带有唯一键的文档中

6.3.3. 该文档可以具有不同的模式,也可以包含嵌套数据

6.3.4. MongoDB和Apache CouchDB

6.4. 关系数据库

6.4.1. 将数据存储在包含具有严格模式行结构的表中,允许在表之间连接行来建立关系

6.4.2. 关系数据库中的查找表或链接表使用的不是查询时的指针结构,而是存储了有关关系属性的结构,类似于图数据库中的边结构

6.4.3. PostgreSQL、Oracle Database和Microsoft SQL Server

6.5. 数据复杂性

7. Apache TinkerPop

7.1. TinkerPop是Apache软件基金会的顶级项目

7.2. 提供了一个与厂商无关的开源图计算框架

7.3. 具有事务(OLTP)能力和分析(OLAP)能力

7.4. 有广泛的第三方库可供使用

8. TinkerGraph

8.1. 一个内存图引擎

8.2. 支持OLTP负载和OLAP负载

8.3. TinkerPop Gremlin Server和Gremlin Console的一部分

8.4. TinkerPop的全功能开源实现

8.4.1. 被作为TinkerPop API的参考实现构建出来的

8.5. 并非一个你能下载的软件

8.5.1. 可下载软件(如Gremlin Server 和Gremlin Console)里的核心引擎

9. Gremlin

9.1. Gremlin遍历语言是TinkerPop项目的图查询语言

9.2. 支持命令式语法和声明式语法

9.2.1. 首选方式是命令式语法

9.3. Gremlin Console

9.3.1. 用于TinkerPop支持图数据库的交互终端应用程序

9.3.2. 允许用户连接到本地或远程的数据库,将数据加载到图中,并交互式地在图上进行遍历

9.3.3. 能作为自带内存图数据的独立应用程序使用

9.3.4. 能作为图数据库服务器的客户端使用

9.4. Gremlin Server

9.4.1. 允许非JVM客户端与基于JVM的图数据库进行通信

9.4.2. 提供能让部署在不同服务器上的数据库相互通信的机制

9.5. Gremlin语言变体

9.5.1. 允许开发人员既使用Gremlin作为查询语言,又能通过他们选择的开发语言方言来实现

9.5.2. 主张以应用程序编程语言的风格来编写Gremlin遍历

9.5.2.1. Java开发人员使用Java语法
9.5.2.2. .NET开发人员使用.NET语法

10. 用例/场景

10.1. 从社交网络分析、推荐引擎、依赖性分析、欺诈检测和主数据管理,到搜索问题和互联网上的研究,你很快就能列出一个适合使用图数据库的用例列表

10.2. 判断一个用例是好还是坏的最重要因素是对要解答的疑问有深入的了解

10.3. 选择/搜索

10.3.1. 侧重于寻找一组具有共同属性(如姓名、位置或雇主)的实体

10.3.2. 不需要数据中丰富的关系

10.3.3. 建议使用诸如PostgreSQL之类的本地数据库或诸如Apache Solr和Elasticsearch之类的搜索技术

10.3.4. 使用RDBMS或搜索技术

10.4. 获取数据相关性或递归数据

10.4.1. 图数据库比任何其他类型数据引擎都能更好地利用这些信息

10.4.2. 图数据库查询语言更适用于推断数据内部的关系

10.4.3. 使用图数据库

10.5. 聚合

10.5.1. 数据聚合查询是关系数据库的一个优秀用例

10.5.2. 关系数据库经过优化,能以最小的开销快速执行复杂的聚合查询

10.5.3. 可以在图数据库中执行,但是图遍历的本质要求接触更多的数据。这会导致更高的查询延迟和更多的资源消耗

10.5.4. 使用RDBMS

10.6. 模式匹配

10.6.1. 基于实体关联方式的模式匹配是充分利用图数据库功能的一个主要例子

10.6.2. 推荐引擎、欺诈检测和入侵检测

10.6.3. 使用图数据库

10.7. 中心性、聚集性和影响力

10.7.1. 一个实体相对于另一个实体的影响力或重要性是图数据库的典型用例

10.7.2. 识别基础设施的关键部分,或者定位数据中的实体组

10.7.3. 要考虑实体、实体之间的关系、事件关系和邻近关系

10.7.4. 使用图数据库

10.8. 数据结构的灵活性不能作为选择图数据库的充分理由,但与其他功能相结合,很可能足以使你转而使用图数据库

10.9. 即使业务领域模型天生适合使用图数据库,但是如果你的具体技术问题并不依赖于图中的关系来求解,那么也应该考虑其他选择

11. SQL

11.1. SQL查询中包含大量join可能表明图数据库是一个很好的选择,但并不能确定

11.2. SQL查询中的大量join通常是数据模型规范化的良好标志

11.3. 当这些join并非用于检索引用数据(如关系数据库中的第三个范式所做的那样),而是用于将记录项链接在一起(就像父子关系那样)时,就可能需要考虑使用图数据库了

11.4. 当我们不知道要执行的join数量时,使用图数据库的递归查询模式更好

11.5. 命令查询责任分离(CQRS)模式

相关文章:

读图数据库实战笔记01_初识图

1. 图论 1.1. 起源于莱昂哈德欧拉在1736年发表的一篇关于“哥尼斯堡七桥问题”的论文 1.2. 要解决这个问题,该图需要零个或两个具有奇数连接的节点 1.3. 任何满足这一条件的图都被称为欧拉图 1.4. 如果路径只访问每条边一次,则该图具有欧拉路径 1.5…...

K-Means和KNN

主要区别 从无序 —> 有序 从K-Means —> KNN KNN:监督学习,类别是已知的,对已知分类的数据进行训练和学习,找到不同类的特征,再对未分类的数据进行分类。K-Means:无监督学习,事先不知道…...

【Python】【Flask】flask_login的初始化

【背景】 想要更高效地用现有的Flask_login包来实现用户管理方面的常用功能会话管理等。不想再手搓了。 【要点】 首先引入flask_login from flask_login import LoginManager, login_user, login_required, logout_user,current_user然后进行app级别的设置和初始化 login…...

Spring Cloud之API网关(Gateway)

目录 API网关 好处 解决方案 Gateway 简介 特征 核心概念 Route(路由) Predicate(断言) Filter(过滤器) 工作流程 Route(路由) 路由配置方式 1.yml配置文件路由 2.bean进行配置 3.动态路由 动态路由 Predicate(断言) 特点 常见断言 示例 Filter(过滤器) …...

nodejs+vue 电子书阅读系统

本文首先介绍了电子书阅读系统的发展背景与发展现状,然后遵循软件常规开发流程,首先针对系统选取适用的语言和开发平台,随着网络技术的不断发展,多媒体技术应用渐渐的出现在教育领域中,电子书阅读已经成为社会的一个热…...

百度文心一言4.0抢先体验教程!

🍁 展望:关注我, AI学习之旅上,我与您一同成长! 一、 引言 想快速体验文心一言4.0,但又觉得技术难度太高?别担心,我来手把手教你! 🚀 10月17日,文心一言4.0…...

单目3D目标检测 方法综述——直接回归方法、基于深度信息方法、基于点云信息方法

本文综合整理单目3D目标检测的方法模型,包括:基于几何约束的直接回归方法,基于深度信息的方法,基于点云信息的方法。万字长文,慢慢阅读~ 直接回归方法 涉及到模型包括:MonoCon、MonoDLE、MonoFlex、CUPNet…...

oracle,CLOB转XML内存不足,ORA-27163: out of memory ORA-06512: at “SYS.XMLTYPE“,

通过kettle采集数据时,表输入的组件,查询报错。 ORA-27163: out of memory ORA-06512: at “SYS.XMLTYPE”, line 272 ORA-06512: at line 1 通过 ALTER SESSION SET EVENTS ‘31156 trace name context forever, level 0x400’; 修改会话配置 或直接修改…...

PHP与mysql数据库交互

PHP与mysql数据库交互 文章目录 PHP与mysql数据库交互方法速查建立与Mysql链接捕获连接错误SQL语句的执行SQL 错误SQL语句执行结果集对象方法速查 案例 方法速查 函数名 作用 mysqli_connect() 与MySQL 数据库建立连接。 mysqli_close() 关闭与MYSQL 数据库建…...

【广州华锐视点】VR飞行员驾驶模拟实训系统

VR飞行员驾驶模拟实训系统是一种基于虚拟现实技术的航空装备仿真测试技术,可以用于飞行员、乘务员和机务人员的训练。该系统可以模拟真实的飞行环境,包括天气、地形、飞机性能等,使被试者能够在虚拟环境中进行飞行操作,从而提高其…...

太烂的牌也要打完只为自己也不是为了其他什么原因。

day17_io02 1.上课代码敲一遍 2.读取一个文件,这个文件中有随机的一些数字字符,统计这些数字有几个偶数,几个奇数,并且追加写入到该文件末尾。 例如: a.txt文件: 3241256364789629090126581212515 奇数&…...

SDL窗口创建以及简单显示(1)

项目创建步骤 1. 使用Qt Creator创建一个C项目 2. 将SDL库文件放到源文件目录下 在项目pro文件中添加库文件 win32{INCLUDEPATH $$PWD/SDL2-2.0.10/includeLIBS $$PWD/SDL2-2.0.10/lib/x86/SDL2.lib } 使用SDL创建一个窗口 #include <stdio.h>#include <SDL.h>…...

【Html】交通灯问题

效果 实现方式 计时器&#xff1a;setTimeout或setInterval来计时。setInterval和 setTimeout 在某些情况下可能会出现计时不准确的情况。这通常是由于JavaScript的事件循环机制和其他代码执行所需的时间造成的。 问询&#xff1a;通过getCurrentLight将每个状态的持续时间设置…...

用IntelliJ远程打断点调试

前提当然是本地和远程部署的代码一样。 记录下步骤&#xff1a; 1&#xff0c;用token登录kuboard&#xff0c;找到目标容器的IP&#xff1a; 2, 用上一步找到的IP等信息创建Remote JVM Debug: 3&#xff0c;打断点&#xff0c;wkb说要把断点此属性改为线程。我试了下似乎…...

Spring-Bean的生命周期概述

Bean的生命周期概述 入门使用的Spring代码&#xff1a; ClassPathXmlApplicationContext context new ClassPathXmlApplicationContext("spring.xml"); UserService userService (UserService) context.getBean("userService"); userService.test(); …...

SENet 学习

ILSVRC 是一个比赛&#xff0c;全称是ImageNet Large-Scale Visual Recognition Challenge&#xff0c;平常说的ImageNet比赛指的是这个比赛。 使用的数据集是ImageNet数据集的一个子集&#xff0c;一般说的ImageNet&#xff08;数据集&#xff09;实际上指的是ImageNet的这个子…...

目前和未来的缓存构建

说起来可能有点反直觉&#xff0c;有时候不运行反而可以帮助我们加快速度&#xff0c;这正是网络浏览器运行的指导原则。不必在页面上加载所有内容&#xff0c;缓存的元素已经存在&#xff0c;不需要每次访问网站或网页时都重新加载。页面加载速度越快&#xff0c;浏览器的工作…...

aws亚马逊云免费账号代充值!!!什么是 AWS Lambda?

AWS Lambda 是一项计算服务&#xff0c;可使您无需预配置或管理服务器即可运行代码。 Lambda 在可用性高的计算基础设施上运行您的代码&#xff0c;执行计算资源的所有管理工作&#xff0c;其中包括服务器和操作系统维护、容量调配和弹性伸缩和记录。使用 Lambda&#xff0c;您…...

《从零开始大模型开发与微调 :基于PyTorch与ChatGLM》简介

内 容 简 介 大模型是深度学习自然语言处理皇冠上的一颗明珠&#xff0c;也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架&#xff0c;以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术&#xff0c;…...

【LeetCode】102. 二叉树的层序遍历

题目链接 文章目录 Python3方法一&#xff1a; 广度优先搜索 (BFS) ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯方法二&#xff1a; 深度优先搜索 (DFS) ⟮ O ( n ) ⟯ \lgroup O(n) \rgroup ⟮O(n)⟯ C方法一&#xff1a; 广度优先搜索 (BFS) ⟮ O ( n ) ⟯ \lgroup O(n…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...