深度学习:激活函数曲线总结
深度学习:激活函数曲线总结
在深度学习中有很多时候需要利用激活函数进行非线性处理,在搭建网路的时候也是非常重要的,为了更好的理解不同的激活函数的区别和差异,在这里做一个简单的总结,在pytorch中常用的激活函数的数学表达形式,同时为了更直观的感受,给出不同激活函数的曲线形式,方便查询。
import torch
import torch.nn as nn
x = torch.linspace(-4, 4, 400) # 在-4和4之间画400个点。
1. nn.leakyReLU()
给负值一个斜率,不全为零。
- 数学公式:
LeakyReLU ( x ) = { x , if x ≥ 0 negative_slope × x , otherwise \text{LeakyReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ \text{negative\_slope} \times x, & \text{ otherwise } \end{cases} LeakyReLU(x)={x,negative_slope×x, if x≥0 otherwise
leakyrelu = nn.LeakyReLU(negative_slope=0.01)
negative_slope
是一个小于1的值,通常设置为0.01,用于控制在输入小于0时的输出斜率。这意味着在nn.LeakyReLU中,负数输入会乘以negative_slope,而正数输入保持不变。
- 对应曲线:
2. nn.Relu()
ReLU是一个常用的激活函数,它将负数值设为0,保持正数值不变。
- 数学公式:
ReLU ( x ) = ( x ) + = max ( 0 , x ) \text{ReLU}(x) = (x)^+ = \max(0, x) ReLU(x)=(x)+=max(0,x)
relu = nn.ReLU()
- 函数曲线:
3. nn.Tanh()
Tanh函数将输入映射到-1和1之间
- 数学公式
Tanh ( x ) = tanh ( x ) = exp ( x ) − exp ( − x ) exp ( x ) + exp ( − x ) \text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)} Tanh(x)=tanh(x)=exp(x)+exp(−x)exp(x)−exp(−x)
Tanh = nn.Tanh()
- 函数曲线
4. nn.PReLU()
PReLU是具有可学习参数的激活函数,用于克服ReLU的一些问题
- 数学公式
RReLU ( x ) = { x if x ≥ 0 a x otherwise \text{RReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise } \end{cases} RReLU(x)={xaxif x≥0 otherwise
PReLU = nn.PReLU(num_parameters=1)
- 函数曲线
5. nn.ELU()
所有点上都是连续的和可微的,训练快
- 数学公式:
ELU ( x ) = { x , if x > 0 α ∗ ( exp ( x ) − 1 ) , if x ≤ 0 \text{ELU}(x) = \begin{cases} x, & \text{ if } x > 0\\ \alpha * (\exp(x) - 1), & \text{ if } x \leq 0 \end{cases} ELU(x)={x,α∗(exp(x)−1), if x>0 if x≤0
ELU = nn.ELU()
- 函数曲线
6. nn.SELU()
- 数学公式:
SELU ( x ) = scale ∗ ( max ( 0 , x ) + min ( 0 , α ∗ ( exp ( x ) − 1 ) ) ) \text{SELU}(x) = \text{scale} * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))) SELU(x)=scale∗(max(0,x)+min(0,α∗(exp(x)−1)))
SELU = nn.SELU()
- 函数曲线:
7. nn.GELU()
- 数学公式:
GELU ( x ) = x ∗ Φ ( x ) \text{GELU}(x) = x * \Phi(x) GELU(x)=x∗Φ(x)
GELU = nn.GELU()
- 函数曲线:
8. nn.Mish()
- 数学公式:
Mish ( x ) = x ∗ Tanh ( Softplus ( x ) ) \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) Mish(x)=x∗Tanh(Softplus(x))
Mish = nn.Mish()
- 函数曲线:
9 . nn.Softmax()
- 数学公式:
Softmax ( x i ) = exp ( x i ) ∑ j exp ( x j ) \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} Softmax(xi)=∑jexp(xj)exp(xi)
Softmax = nn.Softmax()
y = Softmax(x)
- 函数曲线:
总结
感觉还是看曲线的形状,把大体的形状记住更直观些。
相关文章:

深度学习:激活函数曲线总结
深度学习:激活函数曲线总结 在深度学习中有很多时候需要利用激活函数进行非线性处理,在搭建网路的时候也是非常重要的,为了更好的理解不同的激活函数的区别和差异,在这里做一个简单的总结,在pytorch中常用的激活函数的…...
Elasticsearch-06-Elasticsearch Java API Client
前言 简介 在 Elasticsearch7.15版本之后,Elasticsearch官方将它的高级客户端 RestHighLevelClient标记为弃用状态。同时推出了全新的 Java API客户端 Elasticsearch Java API Client,该客户端也将在 Elasticsearch8.0及以后版本中成为官方推荐使用的客…...

计算机网络第3章-运输层(2)
可靠数据传输原理 可靠数据传输依靠数据在一条可靠信道上进行传输。 TCP也正是依靠可靠信道进行传数据,从而数据不会被丢失。 而实现这种可靠数据传输服务是可靠数据传输协议的责任 构造可靠数据传输协议 1.经完全可靠信道的可靠数据传输:rdt1.0 在…...

【微信小程序】实现投票功能(附源码)
一、Vant Weapp介绍 Vant Weapp 是一个基于微信小程序的组件库,它提供了丰富的 UI 组件和交互功能,能够帮助开发者快速构建出现代化的小程序应用。Vant Weapp 的设计理念注重简洁、易用和高效,同时提供灵活的定制化选项,以满足开发…...

Pytorch入门实例的分解写法
数据集是受教育年限和收入,如下图 代码如下 import torch import numpy as np import matplotlib.pyplot as plt import pandas as pddata pd.read_csv(./Income.csv)X torch.from_numpy(data.Education.values.reshape(-1,1).astype(np.float32)) Y torch.from_numpy(data…...
Google单元测试sample分析(一)
本文开始从googletest提供的sample案例分析如何使用单元测试, 代码路径在googletest/googletest/samples/sample1.unittest.cc 本文件主要介绍EXPECT*相关宏使用 EXPECT_EQ 判断是否相等 EXPECT_TRUE 是否为True EXPECT_FALSE 是否为False TEST(FactorialTest, N…...
requests 实践
Requests 常用参数 method: 请求方式 get,或者 post,put,delete 等 url : 请求的 url 地址 接口文档标注的接口请求地址 params:请求数据中的链接,常见的一个 get 请求,请求参数都是在 url 地址…...

UI设计公司成长日记2:修身及持之以恒不断学习是要务
作者:蓝蓝设计 要做一个好的UI设计公司,不仅要在能力上设计能力一直(十几年几十年)保持优秀稳定的保持输出,以及心态的平和宽广。创始人对做公司要有信心,合伙人之间要同甘共苦,遵守规则,做好表…...

辅助驾驶功能开发-功能规范篇(23)-2-Mobileye NOP功能规范
5.2 状态机要求 5.2.1 NOP/HWP 状态机 NOP/HWP状态机如下所示: 下表总结了这些状态: 状态描述Passive不满足功能条件,功能无法控制车辆执行器。Standby满足功能条件。该功能不是由驾驶员激活的。功能不控制车辆执行器。Active - Main功能由驾驶员激活。功能是控制…...
React中如何提高组件的渲染效率
一、是什么 react 基于虚拟 DOM 和高效 Diff算法的完美配合,实现了对 DOM最小粒度的更新,大多数情况下,React对 DOM的渲染效率足以我们的业务日常 复杂业务场景下,性能问题依然会困扰我们。此时需要采取一些措施来提升运行性能&…...
springboot+mybatis3.5.2动态查询某一字段在某一段时间内的统计信息(折线图)
需求: 动态查询某一统计字段在一段时间内的统计折线图信息 controller层 ApiOperation(value "getStatisticDetail", notes "统计折线图")GetMapping("/detail")ResponseStatus(HttpStatus.OK)AccessLogAnnotation(ignoreRequestA…...

关于本地项目上传到gitee的详细流程
如何上传本地项目到Gitee的流程: 1.Gitee创建项目 2. 进入所在文件夹,右键点击Git Bash Here 3.配置用户名和邮箱 在gitee的官网找到命令,注意这里的用户名和邮箱一定要和你本地的Git相匹配,否则会出现问题。 解决方法如下&…...

MarkDown详细入门笔记
本帖整理了MarkDown的入门学习笔记~ 一.介绍 Markdown 是一种轻量级的「标记语言」,它的优点很多,目前也被越来越多的写作爱好者,撰稿者广泛使用。 诸如微信公众平台、CSDN博客、还有Typora中写文档的部分,均涉及到MD的功能~ 它…...
算法——贪心算法
贪心算法(Greedy Algorithm)是一种算法设计策略,通常用于解决组合优化问题,其核心思想是在每一步都选择当前状态下最优的解,而不考虑之后的步骤。贪心算法在每一步都做出局部最优选择,期望通过一系列局部最…...

102.linux5.15.198 编译 firefly-rk3399(1)
1. 平台: rk3399 firefly 2g16g 2. 内核:linux5.15.136 (从内核镜像网站下载) 3. 交叉编译工具 gcc version 7.5.0 (Ubuntu/Linaro 7.5.0-3ubuntu1~18.04) 4. 宿主机:ubuntu18.04 5. 需要的素材和资料ÿ…...

易点易动固定资产管理系统:多种盘点方式助力年终固定资产盘点
年末固定资产盘点是企业管理中一项重要而繁琐的任务。为了帮助企业高效完成年终固定资产盘点工作,易点易动固定资产管理系统提供了多种盘点方式。本文将详细介绍易点易动固定资产管理系统的多种盘点方式,展示如何借助该系统轻松完成年终固定资产盘点&…...

C# Winform编程(10)Chart图表控件
Chart控件 Chart控件Chart属性详述Chart属性设置图表样式属性数据样式属性图例样式图标区样式SeriesChartType类型 Chart控件鼠标滚轮事件特殊处理Series绑定数据演示代码鼠标滚轮缩放图表示例参考引用 Chart控件 Chart控件是微软自带的一种图形可视化组件,使用简单…...
群狼调研(长沙产品概念测试)|如何做新品上市满意度调研
新品上市满意度调研是一种重要的市场研究方法,它通过收集和分析消费者对新产品的态度、购买意愿和满意度等方面的数据,帮助企业了解消费者的需求和期望,发现新产品的问题和不足,从而为产品改进提供有力的数据支持。群狼调研&#…...

Lua与C++交互
文章目录 1、Lua和C交互2、基础练习2.1、加载Lua脚本并传递参数2.2、加载脚本到stable(包)2.3、Lua调用c语言接口2.4、Lua实现面向对象2.5、向脚本中注册c的类 1、Lua和C交互 1、lua和c交互机制是基于一个虚拟栈,C和lua之间的所有数据交互都通…...
Ubuntu安装pyenv,配置虚拟环境
文章目录 安装pyenvpyenv创建虚拟环境一般情况下创建虚拟环境的方法 安装pyenv 摘自:文章 pyenv可以管理不同的python版本 1、安装pyenv的依赖库 # 执行以下命令安装依赖库 # 更新源 sudo apt-get update # 更新软件 sudo apt-get upgradesudo apt-get install ma…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...

Canal环境搭建并实现和ES数据同步
作者:田超凡 日期:2025年6月7日 Canal安装,启动端口11111、8082: 安装canal-deployer服务端: https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...