当前位置: 首页 > news >正文

基于大数据的时间序列股价预测分析与可视化 - lstm 计算机竞赛

文章目录

  • 1 前言
  • 2 时间序列的由来
    • 2.1 四种模型的名称:
  • 3 数据预览
  • 4 理论公式
    • 4.1 协方差
    • 4.2 相关系数
    • 4.3 scikit-learn计算相关性
  • 5 金融数据的时序分析
    • 5.1 数据概况
    • 5.2 序列变化情况计算
  • 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 大数据时间序列股价预测分析系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 时间序列的由来

提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的共同特点都是跳出变动成分的分析角度,从时间序列本身出发,力求得出前期数据与后期数据的量化关系,从而建立前期数据为自变量,后期数据为因变量的模型,达到预测的目的。来个通俗的比喻,大前天的你、前天的你、昨天的你造就了今天的你。

2.1 四种模型的名称:

  • AR模型:自回归模型(Auto Regressive model);
  • MA模型:移动平均模型(Moving Average model);
  • ARMA:自回归移动平均模型(Auto Regressive and Moving Average model);
  • ARIMA模型:差分自回归移动平均模型。
  • AR模型:

如果某个时间序列的任意数值可以表示成下面的回归方程,那么该时间序列服从p阶的自回归过程,可以表示为AR§:

在这里插入图片描述
AR模型利用前期数值与后期数值的相关关系(自相关),建立包含前期数值和后期数值的回归方程,达到预测的目的,因此成为自回归过程。这里需要解释白噪声,白噪声可以理解成时间序列数值的随机波动,这些随机波动的总和会等于0,例如,某饼干自动化生产线,要求每包饼干为500克,但是生产出来的饼干产品由于随机因素的影响,不可能精确的等于500克,而是会在500克上下波动,这些波动的总和将会等于互相抵消等于0。

3 数据预览


import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

#准备两个数组
list1 = [6,4,8]
list2 = [8,6,10]#分别将list1,list2转为Series数组
list1_series = pd.Series(list1) 
print(list1_series)
list2_series = pd.Series(list2) 
print(list2_series)#将两个Series转为DataFrame,对应列名分别为A和B
frame = { 'Col A': list1_series, 'Col B': list2_series } 
result = pd.DataFrame(frame)result.plot()
plt.show()

在这里插入图片描述

4 理论公式

4.1 协方差

首先看下协方差的公式:

在这里插入图片描述

在这里插入图片描述

4.2 相关系数

计算出Cov后,就可以计算相关系数了,值在-1到1之间,越接近1,说明正相关性越大;越接近-1,则负相关性越大,0为无相关性
公式如下:

在这里插入图片描述

4.3 scikit-learn计算相关性

在这里插入图片描述


#各特征间关系的矩阵图
sns.pairplot(iris, hue=‘species’, size=3, aspect=1)

在这里插入图片描述

Andrews Curves 是一种通过将每个观察映射到函数来可视化多维数据的方法。
使用 Andrews Curves 将每个多变量观测值转换为曲线并表示傅立叶级数的系数,这对于检测时间序列数据中的异常值很有用。


plt.subplots(figsize = (10,8))
pd.plotting.andrews_curves(iris, ‘species’, colormap=‘cool’)

在这里插入图片描述
这里以经典的鸢尾花数据集为例

setosa、versicolor、virginica代表了三个品种的鸢尾花。可以看出各个特征间有交集,也有一定的分别规律。


#最后,通过热图找出数据集中不同特征之间的相关性,高正值或负值表明特征具有高度相关性:

fig=plt.gcf()
fig.set_size_inches(10,6)
fig=sns.heatmap(iris.corr(), annot=True, cmap='GnBu', linewidths=1, linecolor='k', \
square=True, mask=False, vmin=-1, vmax=1, \
cbar_kws={"orientation": "vertical"}, cbar=True)

在这里插入图片描述

5 金融数据的时序分析

主要介绍:时间序列变化情况计算、时间序列重采样以及窗口函数

5.1 数据概况


import pandas as pd

tm = pd.read_csv('/home/kesci/input/gupiao_us9955/Close.csv')
tm.head()

在这里插入图片描述

数据中各个指标含义:

  • AAPL.O | Apple Stock
  • MSFT.O | Microsoft Stock
  • INTC.O | Intel Stock
  • AMZN.O | Amazon Stock
  • GS.N | Goldman Sachs Stock
  • SPY | SPDR S&P; 500 ETF Trust
  • .SPX | S&P; 500 Index
  • .VIX | VIX Volatility Index
  • EUR= | EUR/USD Exchange Rate
  • XAU= | Gold Price
  • GDX | VanEck Vectors Gold Miners ETF
  • GLD | SPDR Gold Trust

8年期间价格(或指标)走势一览图

在这里插入图片描述

5.2 序列变化情况计算

  • 计算每一天各项指标的差异值(后一天减去前一天结果)
  • 计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)
  • 计算平均计算pct_change指标
  • 绘图观察哪个指标平均增长率最高
  • 计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)

计算每一天各项指标的差异值(后一天减去前一天结果)

在这里插入图片描述

计算pct_change:增长率也就是 (后一个值-前一个值)/前一个值)

在这里插入图片描述

计算平均计算pct_change指标
绘图观察哪个指标平均增长率最高

在这里插入图片描述
除了波动率指数(.VIX指标)增长率最高外,就是亚马逊的股价了!贝佐斯简直就是宇宙最强光头强

计算连续时间的增长率(其中需要计算今天价格和昨天价格的差异)


#第二天数据
tm.shift(1).head()

#计算增长率
rets = np.log(tm/tm.shift(1))
print(rets.tail().round(3))#cumsum的小栗子:
print('小栗子的结果:',np.cumsum([1,2,3,4]))#增长率做cumsum需要对log进行还原,用e^x
rets.cumsum().apply(np.exp).plot(figsize=(10,6))

在这里插入图片描述
以上是在连续时间内的增长率,也就是说,2010年的1块钱,到2018年已经变为10多块了(以亚马逊为例)

(未完待续,该项目为demo预测部分有同学需要联系学长完成)

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

基于大数据的时间序列股价预测分析与可视化 - lstm 计算机竞赛

文章目录 1 前言2 时间序列的由来2.1 四种模型的名称: 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 &…...

APP分发-CDN加速原理

摘要 CDN的全称是(Content Delivery Network),即内容分发网络。其目的是通过在现有的Internet中增加一层新的CACHE(缓存)层,将网站的内容发布到最接近用户的网络”边缘“的节点,使用户可以就近取得所需的内容,提高用户访问网站的…...

【Java 进阶篇】Java Request 继承体系详解

在Java编程中,Request(请求)是一个常见的概念,特别是在Web开发中。Request通常用于获取来自客户端的信息,以便服务器能够根据客户端的需求提供相应的响应。在Java中,Request通常涉及到一系列类和接口&#…...

通过阿里云创建accessKeyId和accessKeySecret

我们想实现服务端向个人发送短信验证码 需要通过accessKeyId和accessKeySecret 这里可以白嫖阿里云的 这里 我们先访问阿里云官网 阿里云地址 进入后搜索并进入短信服务 如果没登录 就 登录一下先 然后在搜索框搜索短信服务 点击进入 因为我也是第一次操作 我们一起点免费开…...

decapoda-research/llama-7b-hf 的踩坑记录

使用transformers加载decapoda-research/llama-7b-hf的踩坑记录。 ValueError: Tokenizer class LLaMATokenizer does not exist or is not currently imported. 解决办法: https://github.com/huggingface/transformers/issues/22222 将tokenizer_config.json中LLa…...

计算机操作系统重点概念整理-第六章 输入输出I/O管理【期末复习|考研复习】

第六章 输入输出I/O管理【期末复习|考研复习】 计算机操作系统系列文章传送门: 第一章 计算机系统概述 第二章 进程管理 第三章 进程同步 第四章 内存管理 第五章 文件管理 第六章 输出输出I/O管理 文章目录 第六章 输入输出I/O管理【期末复习|考研复习】前言六、输…...

uniapp开发小程序—picker结合后台数据实现二级联动的选择

一、效果图 二、完整代码 <template><view><picker mode"multiSelector" change"bindMultiPickerChange" columnchange"bindMultiPickerColumnChange":value"multiIndex" :range"multiArray"><view c…...

React Swiper.js使用(详细版)3D聚焦特效,自定义导航按钮等

共用代码 import swiper/css import swiper/css/navigation import swiper/css/paginationimport { Navigation, Pagination, Scrollbar, A11y, Autoplay, EffectCreative } from swiper/modules;import { Swiper, SwiperSlide, } from swiper/react; 普通版本 重点&#xff…...

零基础Linux_23(多线程)线程安全+线程互斥(加锁)+死锁

目录 1. 线程安全 1.1 线程不安全前期 1.2 线程不安全原因 2. 线程互斥 2.1 加锁保护&#xff08;代码&#xff09; 2.2 锁的本质 3. 可重入对比线程安全 4. 死锁 4.1 死锁的必要条件 4.2 避免死锁 5. 笔试面试题 答案及解析 本篇完。 1. 线程安全 基于上一篇线程…...

【算法|贪心算法系列No.5】leetcode409. 最长回文串

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…...

【Linux】安装与配置虚拟机及虚拟机服务器坏境配置与连接---超详细教学

一&#xff0c;操作系统介绍 1.1.什么是操作系统 操作系统&#xff08;Operating System&#xff0c;简称OS&#xff09;是一种系统软件&#xff0c;它是计算机硬件和应用软件之间的桥梁。它管理计算机的硬件和软件资源&#xff0c;为应用程序提供接口和服务&#xff0c;并协…...

机器学习实验一:KNN算法,手写数字数据集(使用汉明距离)(2)

KNN-手写数字数据集&#xff1a; 使用sklearn中的KNN算法工具包&#xff08; KNeighborsClassifier)替换实现分类器的构建&#xff0c;注意使用的是汉明距离&#xff1b; 运行结果&#xff1a;&#xff08;大概要运行4分钟左右&#xff09; 代码&#xff1a; import pandas as…...

docker应用部署---nginx部署的配置

1. 搜索nginx镜像 docker search nginx2. 拉取nginx镜像 docker pull nginx3. 创建容器&#xff0c;设置端口映射、目录映射 # 在/root目录下创建nginx目录用于存储nginx数据信息 mkdir ~/nginx cd ~/nginx mkdir conf cd conf# 在~/nginx/conf/下创建nginx.conf文件,粘贴下…...

Sql Server中的表组织和索引组织(聚集索引结构,非聚集索引结构,堆结构)

正文 SqlServer用三种方法来组织其分区中的数据或索引页&#xff1a; 1、聚集索引结构 聚集索引是按B树结构进行组织的&#xff0c;B树中的每一页称为一个索引节点。每个索引行包含一个键值和一个指针。指针指向B树上的某一中间级页&#xff08;比如根节点指向中间级节点中的…...

C++类对象反制机制实现_精简修改版

前几天写的类对象反射机制太烦锁了,今天写个修改版的,精简为两个类 一个是类的数据结构,另一个是类的父类对象,把所有操作类的方法都写到父类中 1.类的信息结构体 struct Field_Node {TCHAR m_name[20]; //字段名称TCHAR m_typeName[20]; // 字段类型名称size_t m_typeHashC…...

C#开发的IEnumerable接口

C#开发的IEnumerable接口 在前面分析中,我们会遇到下面这行代码: var refineries = self.World.ActorsWithTrait<IAcceptResources>() .Where(r => r.Actor != ignore && r.Actor.Owner == self.Owner && IsAcceptableProcType(r.Actor)) .Select…...

Redis详细安装教程

目录 一、Redis 的安装及启动停止1-1 下载 redis的压缩包1-2 开始解压 redis1-3 执行 make 命令编译1-4 启动 redis修改配置文件1-5 设置远程连接1-6 设置后台启动1-7 设置密码1-8 配置服务启动&#xff08;使用 systemctl 的方法&#xff09;启动 redis配置开机启动操作redis使…...

36基于matlab的对分解层数和惩罚因子进行优化

基于matlab的对分解层数和惩罚因子进行优化。蚁狮优化算法优化VMD,算术优化算法优化VMD&#xff0c;遗传优化算法优化VMD&#xff0c;灰狼优化算法优化VMD&#xff0c;海洋捕食者优化算法优化VMD&#xff0c;粒子群优化VMD&#xff0c;麻雀优化算法优化VMD&#xff0c;鲸鱼优化…...

【Flutter】自定义分段选择器Slider

【Flutter】ZFJ自定义分段选择器Slider 前言 在开发一个APP的时候&#xff0c;需要用到一个分段选择器&#xff0c;系统的不满足就自己自定义了一个&#xff1b; 可以自定义节点的数量、自定义节点的大小、自定义滑竿的粗细&#xff0c;自定义气泡的有无等等… 基本上满足你…...

【软考系统架构设计师】2023年系统架构师冲刺模拟习题之《软件工程》

在软考中软件工程模块主要包含以下考点&#xff1a; 文章目录 软件过程模型&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;逆向工程&#x1f31f;基于构件的软件工程&#x1f31f;&#x1f31f;软件开发与软件设计与维护净室软件工程软件模型软件需求 软件过程模型&am…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...