当前位置: 首页 > news >正文

explain查询sql执行计划返回的字段的详细说明

当使用EXPLAIN命令查看SQL语句的执行计划时,会返回一张表格,其中包含了该SQL语句的执行计划。下面是每个字段的详细分析:

  1. id:执行计划的唯一标识符。如果查询中有子查询,每个子查询都会有一个唯一的ID。在执行计划中,ID较小的子查询会先执行。

  2. select_type:查询类型,表示该执行计划是简单查询、联合查询、子查询等类型。常见的select_type值有:

    • SIMPLE:简单查询,不包含子查询或UNION操作。
    • PRIMARY:主查询,包含子查询或UNION操作。
    • SUBQUERY:子查询,嵌套在其他查询中。
    • UNION:UNION操作的第二个或后续查询。
    • DEPENDENT UNION:依赖于外部查询结果的UNION操作。
    • UNION RESULT:UNION操作的结果集。
    • DERIVED:派生表,通过FROM子句中的子查询创建的临时表。
    • MATERIALIZED:材料化表,通过FROM子句中的子查询创建的临时表。
  3. table:要查询的表名。如果查询涉及多个表,则可能会显示多个表名。

  4. partitions:分区信息,如果表被分区,则会显示分区信息。

  5. type:访问类型,表示MySQL如何访问表。常见的访问类型有:

    • ALL:全表扫描,需要扫描整个表。
    • index:索引扫描,只需要扫描索引树,而不需要扫描整个表。
    • range:范围扫描,只扫描满足条件的行。
    • ref:基于索引的连接,使用非唯一索引或唯一索引的前缀来查找匹配的行。
    • eq_ref:基于唯一索引的连接,只有一行匹配。
    • const:使用常量值来匹配,通常用于主键或唯一索引的查询。
    • system:特殊情况下的访问类型,例如在执行OPTIMIZE TABLE或ALTER TABLE语句时。
  6. possible_keys:可能使用的索引。该字段显示可能用于此查询的索引列表,但MySQL不一定会使用它们。

  7. key:实际使用的索引。如果MySQL选择了一个索引来执行查询,则该字段显示所选索引的名称。

  8. key_len:使用的索引长度。该字段显示MySQL在索引中使用的字节数。

  9. ref:与索引比较的列。该字段显示MySQL在执行查询时使用的索引列。

  10. rows:扫描的行数。该字段显示MySQL估计需要扫描的行数。这是一个估算值,实际扫描的行数可能更少或更多。

  11. filtered:过滤后的行数。该字段显示MySQL在扫描结果集时应用过滤器的行数百分比。例如,如果MySQL扫描了1000行,但只返回了100行,则过滤率为10%。

  12. Extra:其他信息,例如是否使用了临时表、是否使用了文件排序等。该字段显示MySQL在执行查询时使用的其他操作。常见的Extra值有:

  • Using temporary:使用了临时表。
  • Using filesort:使用了文件排序。
  • Using index:使用了覆盖索引扫描。
  • Using where:使用了WHERE子句。
  • Using join buffer:使用了连接缓冲区。
  • Impossible where:WHERE子句的条件总是false。
  • Select tables optimized away:查询优化器已经消除了不需要的表。

通过分析这些字段,可以了解查询的执行计划以及可能存在的性能问题,并根据需要进行优化。

相关文章:

explain查询sql执行计划返回的字段的详细说明

当使用EXPLAIN命令查看SQL语句的执行计划时,会返回一张表格,其中包含了该SQL语句的执行计划。下面是每个字段的详细分析: id:执行计划的唯一标识符。如果查询中有子查询,每个子查询都会有一个唯一的ID。在执行计划中&a…...

讯飞输入法13.0发布,推出行业首款生成式AI输入法

🦉 AI新闻 🚀 讯飞输入法13.0发布,推出行业首款生成式AI输入法 摘要:科大讯飞在2023年全球开发者节上发布了全新讯飞输入法13.0版本,其中最大的亮点是推出了行业首款生成式AI输入法。这次升级将生成式AI能力融入输入…...

35. 搜索插入位置、Leetcode的Python实现

博客主页:🏆看看是李XX还是李歘歘 🏆 🌺每天分享一些包括但不限于计算机基础、算法等相关的知识点🌺 💗点关注不迷路,总有一些📖知识点📖是你想要的💗 ⛽️今…...

使用 DDPO 在 TRL 中微调 Stable Diffusion 模型

引言 扩散模型 (如 DALL-E 2、Stable Diffusion) 是一类文生图模型,在生成图像 (尤其是有照片级真实感的图像) 方面取得了广泛成功。然而,这些模型生成的图像可能并不总是符合人类偏好或人类意图。因此出现了对齐问题,即如何确保模型的输出与…...

cocosCreator 之 crypto-es数据加密

版本: 3.8.0 语言: TypeScript 环境: Mac 简介 项目开发中,针对于一些明文数据,比如本地存储和Http数据请求等,进行加密保护,是有必要的。 关于加密手段主要有: 对称加密 使用相…...

Leetcode---368周赛

题目列表 2908. 元素和最小的山形三元组 I 2909. 元素和最小的山形三元组 II 2910. 合法分组的最少组数 2911. 得到 K 个半回文串的最少修改次数 一、元素和最小的山形三元组I 没什么好说的,不会其他方法就直接暴力,时间复杂度O(n^3),代…...

矢量图形编辑软件Illustrator 2023 mac中文版软件特点(ai2023) v27.9

illustrator 2023 mac是一款矢量图形编辑软件,用于创建和编辑排版、图标、标志、插图和其他类型的矢量图形。 illustrator 2023 mac软件特点 矢量图形:illustrator创建的图形是矢量图形,可以无限放大而不失真,这与像素图形编辑软…...

一、Docker Compose——什么是 Docker Compose

Docker Compose 是一个用来定义和运行多容器 Docker 应用程序的工具,他的方便之处就是可以使用 YAML 文件来配置将要运行的 Docker 容器,然后使用一条命令即可创建并启动配置好的 Docker 容器了;相比手动输入命令的繁琐,Docker Co…...

Java提升技术,进阶为高级开发和架构师的路线

原文网址:Java提升技术,进阶为高级开发和架构师的路线-CSDN博客 简介 Java怎样提升技术?怎样进阶为高级开发和架构师?本文介绍靠谱的成长路线。 首先点明,只写业务代码是无法成长技术的。提升技术的两个方法是&…...

记一次 .Net+SqlSugar 查询超时的问题排查过程

环境和版本&#xff1a;.Net 6 SqlSuger 5.1.4.* &#xff0c;数据库是mysql 5.7 &#xff0c;数据量在2000多条左右 业务是一个非常简单的查询&#xff0c;代码如下&#xff1a; var list _dbClient.Queryable<tb_name>().ToList(); tb_name 下配置了一对多的关系…...

PHP危险函数

PHP危险函数 文章目录 PHP危险函数PHP 代码执行函数eval 语句assert()语句preg_replace()函数正则表达式里修饰符 回调函数call_user_func()函数array_map()函数 OS命令执行函数system()函数exec()函数shell_exec()函数passthru() 函数popen 函数反引号 实列 通过构造函数可以执…...

【ARM Cortex-M 系列 4 番外篇 -- 常用 benchmark 介绍】

文章目录 1.1 CPU 性能测试 MIPS 计算1.1.1 Cortex-M7 CPI 1.2 benchmark 小节1.3.1 Geekbenck 介绍 1.3 编译参数配置 1.1 CPU 性能测试 MIPS 计算 每秒百万指令数 (MIPS)&#xff1a;在数据压缩测试中&#xff0c;MIPS 每秒测量一次 CPU 执行的低级指令的数量。越高越好&…...

web安全-原发抗抵赖

原发抗抵赖 原发抗抵赖也称不可否认性&#xff0c;主要表现以下两种形式&#xff1a; 数据发送者无法否认其发送数据的事实。例如&#xff0c;A向B发信&#xff0c;事后&#xff0c;A不能否认该信是其发送的。数据接收者事后无法否认其收到过这些数据。例如&#xff0c;A向B发…...

强化学习------PPO算法

目录 简介一、PPO原理1、由On-policy 转化为Off-policy2、Importance Sampling&#xff08;重要性采样&#xff09;3、off-policy下的梯度公式推导 二、PPO算法两种形式1、PPO-Penalty2、PPO-Clip 三、PPO算法实战四、参考 简介 PPO 算法之所以被提出&#xff0c;根本原因在于…...

node(三)express框架

文章目录 1.express介绍2.express初体验3.express路由3.1什么是路由&#xff1f;3.2路由的使用 1.express介绍 是一个基于Node平台的极简、灵活的WEB应用开发框架&#xff0c;官网地址&#xff1a;https://www.expressjs.com.cn/ 简单来说&#xff0c;express是一个封装好的工…...

linux find命令搜索日志内容

linux find命令搜索日志内容 查询服务器log日志 find /opt/logs/ -name "filename.log" | xargs grep -a "这里是要查询的字符"加上-a 是为了不报查出 binary 的错 服务器会返回 包含所查字符的整行日志信息...

CentOS 编译安装TinyXml2

安装 TinyXml2 Git 源码下载地址:https://github.com/leethomason/tinyxml2 步骤1&#xff1a;首先&#xff0c;你需要下载tinyxml2的源代码。你可以从Github或者源代码官方网站下载。并上传至/usr/local/source_code/ 步骤2&#xff1a;下载完成后&#xff0c;需要将源代码解…...

竞赛选题 深度学习人体跌倒检测 -yolo 机器视觉 opencv python

0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; **基于深度学习的人体跌倒检测算法研究与实现 ** 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f947;学长这里给一个题目综合评分(每项满…...

使用gson将复杂的树型结构转Json遇到的问题,写入文件为空

某个项目需要用到一个较为复杂的数据结构。定义成一个树型链表。 public class TreeNode { private String name; public String getName() { return name; } public void setName(String name) { this.name name; } public String getPartType() { retur…...

JavaScript异步编程:提升性能与用户体验

目录 什么是异步编程&#xff1f; 回调函数 Promise Async/Await 总结 在Web开发中&#xff0c;处理耗时操作是一项重要的任务。如果我们在执行这些操作时阻塞了主线程&#xff0c;会导致页面失去响应&#xff0c;用户体验下降。JavaScript异步编程则可以解决这个问题&…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...