Hive表优化、表设计优化、Hive表数据优化(ORC)、数据压缩、存储优化
文章目录
- Hive表优化
- Hive表设计优化
- 分区表结构 - 分区设计思想
- 分桶表结构 - Join问题
- Hive中的索引
- Hive表数据优化
- 常见文件格式
- TextFile
- SequenceFile
- Parquet
- ORC
- 数据压缩
- 存储优化 - 避免小文件生成
- 存储优化 - 合并输入的小文件
- 存储优化 - ORC文件索引
- Row Group Index
- Bloom Filter Index
- 存储优化 - ORC矢量化查询
Hive表优化
- 当执行查询计划时,Hive会使用表的最后一级目录作为底层处理数据的输入,即全表扫描。
- Step1:先根据表名在元数据中进行查询表对应的HDFS目录
- Step2:然后将整个HDFS中表的目录作为底层查询的输入,可以通过explain命令查看执行计划依赖的数据
Hive表设计优化
分区表结构 - 分区设计思想
- 设计思想:根据查询需求,将数据按照查询的条件(一般以时间)进行分区存储,将不同分区的数据单独使用一个HDFS目录存储。
- 分区表的构建和使用可见本专栏对应的文章。
分桶表结构 - Join问题
- 分桶表是按一定规则将数据划分到不同的文件中存储(分区表是分到不同目录)
- 如果有两张表按照相同的划分规则(按照Join的关联字段)将各自的数据进行划分,Join时就可以实现桶于桶之间的Join,避免不必要的比较。
- 分桶表的构建和操作相关SQL可见本专栏对应的文章。
Hive中的索引
- Hive的索引与关系型数据库中的索引并不相同,Hive不支持主键或外键索引。
- 索引功能从Hive0.7开始,到Hive3.0后不再支持。
- 建立索引时,Hive中会自动创建一张索引表,该表记录了该字段每个值与数据实际物理位置之间的关系。
- 当Hive中原始数据表的数据更新时,索引表不会自动更新
- 必须手动执行ALTER INDEX命令实现更新索引表,整体性能较差。
- 在实际应用中推荐使用ORC文件格式中的索引、物化视图来代替Hive Index提高查询性能。
- 语法:
- 创建索引
CREATE INDEX idx_user_id_login ON TABLE tb_login_part(userid) AS 'COMPACT' WITH deferred REBUILD;
- 构建索引:通过运行一个MapReduce程序来构建索引
ALTER INDEX idx_user_id_login ON tb_login_part REBUILD;
Hive表数据优化
- 为了提高对HDFS文件读写的性能,Hive提供了多种文件存储格式:TextFile、SequenceFile、ORC、Parquet等;
- 不同的文件存储格式具有不同的存储特点,有的可以降低存储空间,有的可以提高查询性能。
- Hive的文件格式在建表时指定,默认是TextFile,对应语法为:
STORED AS file_format
常见文件格式
TextFile
- TextFile是Hive中默认的文件格式,存储形式为按行存储。
- 优点:最简单的数据格式,可以直接查看,可以用任意分隔符进行分割,便于共享数据,可以搭配压缩一起使用。
- 缺点:耗费存储空间,I/O性能较低;结合压缩时Hive不进行数据切分合并,不能进行并行操作,查询效率低;按行存储,读取列的性能差。
- 适合小量数据的存储查询,一般用作第一层数据加载和测试使用。
SequenceFile
- 是Hadoop里用来存储序列化的键值对即二进制的一种文件格式。
- 也可以作为MapRrduce作业的输入和输出,Hive也支持这种格式。
- 加载数据时不能直接用load,因为load不经过MR程序,就实现不了SequenceFile。
- SequenceFile使用方法:
- 创建表
CREATE TABLE tb_sogou_seq(stime STRING,userid STRING
)ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'STORED AS SEQUENCEFILE;
- 导入数据(不能直接load,需要通过INSERT调用MR程序实现压缩)
INSERT INTO TABLE tb_sogou_seq
SELECT * FROM tb_sogou_source;
Parquet
- 是一种支持嵌套结构的列式存储文件格式。
- 使用方法:(和SequenceFile一样不能直接load)
CREATE TABLE tb_sogou_parquet(stime STRING,userid STRING
)ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'STORED AS PARQUET;INSERT INTO TABLE tb_sogou_parquet
SELECT * FROM tb_sogou_source;
ORC
- 是一种列式存储格式
- 优点:
- 列式存储效率非常高
- 可压缩,高效的列存取
- 查询效率较高,支持索引
- 支持矢量化查询
- 缺点:
- 加载时性能消耗较大
- 需要通过textFile文件转化生成
- 读取全量数据时性能较差
- 适合Hive中大型的存储、查询。
- ORC不是一个单纯的列式存储格式,仍然是首先根据行组分割整个表,在每一个行组内进行按列存储。
- ORC文件是自描述的,它的元数据使用Protocol Buffers序列化,并且文件中的数据尽可能地压缩以降低存储空间的消耗。
- 用法和SequenceFile相同:
CREATE TABLE tb_sogou_parquet(stime STRING,userid STRING
)ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'STORED AS ORC;INSERT INTO TABLE tb_sogou_orc
SELECT * FROM tb_sogou_source;
数据压缩
- Hive的数据压缩实际上是MapReduce的压缩
- Hive的压缩就是使用了Hadoop中的压缩实现的,Hadoop中支持的压缩在Hive中都可以直接使用。
- Hive中压缩配置:
- 开启Hive中间传输数据压缩功能
-- 1) 开启hive中间传输数据压缩功能:
SET hive.exec.compress.intermediate=true;
-- 2) 开启mapreduce中map输出压缩功能
SET mapreduce.map.output.compress=true;
-- 3) 设置mapreduce中map输出数据的压缩方式
SET mapreduce.map.output.compress.codec=org.apache.io.compress.SnappyCodec;
- 开启Reduce输出阶段压缩
-- 1) 开启hive最终输出数据压缩功能
SET hive.exec.compress.output=true;
-- 2) 开启mapreduce最终输出数据压缩
SET mapreduce.output.fileoutputformat.compress=true;
-- 3) 设置mapreduce最终数据输出压缩方式
SET mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
-- 4) 设置mapreduce最终数据输出压缩为块压缩
SET mapreduce.output.fileoutputformat.compress.type=BLOCK;
- 配合文件存储格式使用:
CREATE TABLE tb_sogou_orc_snappy
STORED AS ORC tblproperties ("orc.compress"="SNAPPY")
AS SELECT * FROM tb_sogou_source;
存储优化 - 避免小文件生成
- Hive的存储本质还是HDFS,由于每个小文件在HDFS中都会产生一条元数据信息,HDFS不利于小文件存储,且不利于MR程序的处理。
- MapReduce中每个小文件会启动一个MapTask计算处理,导致资源的浪费。
- Hive可以自动判断是否是小文件,如果是,则自动合并小文件。
- 参数设置:
-- 如果hive程序只有maptask,将MapTask产生的所有小文件进行合并
SET hive.merge.mapfiles=true;
-- 如果hive程序有Map和ReduceTask,将ReduceTask产生的所以小文件进行合并
SET hive.merge.mapredfiles=true;
-- 每一个合并的文件的大小
SET hive.merge.size.per.task=256000000;
-- 平均每个文件的大小,如果小于这个值就会进行合并
SET hive.merge.smallfiles.avgsize=16000000;
存储优化 - 合并输入的小文件
- 数据处理时输入小文件的情况下,Hive中提供一种输入类CombineHiveInputFormat,用于将小文件合并以后,再进行处理。
- 参数设置:
-- 设置Hive中底层MapReduce读取数据的输入类:将所有文件合并为一个大文件作为输入
SET hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
存储优化 - ORC文件索引
- 使用ORC文件时,为了加快读取ORC文件中的数据内容,ORC提供了两种索引机制:
- Row Group Index
- Bloom Filter Index
- 当数据写入数据时,可以指定构建索引,当用户查询数据时,可以根据索引提前对数据进行过滤,避免不必要的数据扫描。
Row Group Index
- 一个ORC文件包含一个或多个stripes(groups of row data即行组),每个stripe中包含了每个column的min/max值得索引数据;
- 当查询中有大于等于小于得操作时,会根据min/max值,跳过不包含在内得stripes。
- 建立ORC表时,指定参数’orc.create.index’='true’之后,便会建立Row Group Index;
- 向表中加载数据时,对需要使用索引的字段进行排序可以提高使用效率。
- 例:
-- 1. 开启索引配置
SET hive.optimize.index.filter=true;
-- 2. 创建表并设置构建索引
CREATE TABLE tb_sogou_orc_indexSTORED AS ORC TBLPROPERTIES("orc.create.index"="true")
AS SELECT * FROM tb_sogou_sourceDISTRIBUTE BY stimeSORT BY stime;
-- 3. 当进行范围或者等值查询(<,>,=)时就可以基于构建的索引进行查询
SELECT COUNT(*) FROM tb_sogou_orc_index WHERE stime > '12:00:00' AND stime < '18:00:00';
Bloom Filter Index
- 建表时通过表参数"orc.bloom.filter.columns"="columnName…"来指定为哪些字段建立BloomFilter索引,在生成数据时,会在每个stripe中为该字段建立BloomFilter的数据结构;
- 当查询条件中包含对该字段的等值过滤时,先从BloomFilter中获取以下stripe是否包含该值,如果不包含,则跳过该stripe。
- 例:
-- 创建表并设置构建布隆索引
CREATE TABLE tb_sogou_orc_indexSTORED AS ORC TBLPROPERTIES
("orc.create.index"="true","orc.bloom.filter.columns"="stime,userid")
AS SELECT * FROM tb_sogou_sourceDISTRIBUTE BY stimeSORT BY stime;
-- 当stime进行范围查询(<,>)时可以走row group index,userid等值查询时走bloom filter index
SELECT COUNT(*) FROM tb_sogou_orc_index WHERE stime > '12:00:00' AND stime < '18:00:00' AND userid = '123345';
存储优化 - ORC矢量化查询
- Hive的默认查询执行引擎一次处理一行,而矢量化查询执行是一种Hive’针对ORC文件操作的特性,目的是按照每批1024行读取数据,并且一次性对整个记录集整合应用操作。
- 要使用矢量化查询,必须以ORC格式存储数据。
- 矢量化查询设置;
SET hive.vectorized.execution.enabled = ture;
SET hive.vectorized.execution.reduce.enabled = true;
相关文章:
Hive表优化、表设计优化、Hive表数据优化(ORC)、数据压缩、存储优化
文章目录Hive表优化Hive表设计优化分区表结构 - 分区设计思想分桶表结构 - Join问题Hive中的索引Hive表数据优化常见文件格式TextFileSequenceFileParquetORC数据压缩存储优化 - 避免小文件生成存储优化 - 合并输入的小文件存储优化 - ORC文件索引Row Group IndexBloom Filter …...

LearnOpenGL-入门-着色器
本人刚学OpenGL不久且自学,文中定有代码、术语等错误,欢迎指正 我写的项目地址:https://github.com/liujianjie/LearnOpenGLProject LearnOpenGL中文官网:https://learnopengl-cn.github.io/ 文章目录着色器GLSL数据类型输入与输…...

【谷粒学院】vue、axios、element-ui、node.js(44~58)
44.前端技术-vue入门 🧨Vue.js 是什么 Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架。 Vue 的核心库只关注视图层,不仅易于上手,还便于与第三方库或既有项目整合。另一方面,当与现代化的工具…...

【一些回忆】2022.02.26-2023.02.26 一个普通男孩的365天
💃🏼 本人简介:男 👶🏼 年龄:18 🤞 作者:那就叫我亮亮叭 📕 专栏:一些回忆 为什么选择在这个时间节点回忆一下呢? 一是因为今天距离2023高考仅剩1…...

OSPF的多区域特性 (电子科技大学TCP/IP实验三)
一.实验目的 1、掌握OSPF 协议中区域的类型、特征和作用 2、掌握OSPF 路由器的类型、特征和作用 3、掌握OSPF LSA 分组的类型、特征和作用 4、理解OSPF 区域类型、路由器类型和OSPF LSA 分组类型间的相互关系 二.预备知识 1、静态路由选择和动态路…...

(四十四)多个事务更新同一行数据时,是如何加锁避免脏写的?
之前我们已经用很多篇幅给大家讲解了多个事务并发运行的时候,如果同时要读写一批数据,此时读和写时间的关系是如何协调的,毕竟要是你不协调好的话,可能就会有脏读、不可重复读、幻读等一系列的问题。 简单来说,脏读、…...

【数据库】第十二章 数据库管理
第12章 数据库管理 数据库的物理存储 关于内存、外存、磁盘、硬盘、软盘、光盘的区别_Allenzyg的博客-CSDN博客_磁盘和硬盘的区别 数据库记录在磁盘上的存储 定长,变长跨块,非跨快 文件的组织方方法: 无序记录文件(堆文件heap或pile file…...

Redis源码---整体架构
目录 前言 Redis目录结构 前言 deps目录 src 目录 tests 目录 utils 目录 重要的配置文件 Redis 功能模块与源码对应 前言 服务器实例 数据库数据类型与操作 高可靠性和高可扩展性 辅助功能 前言 以先面后点的方法推进无特殊说明,都是基于 Redis 5.0.…...

基于springboot+vue的校园招聘系统
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...

SAP MM学习笔记1-SAP中扩张的概念,如何将一个物料从工厂A扩张到工厂B
MM中在创建物料的时候,最低也得创建如下5个view。 基本数据1 基本数据2 购买管理 会计1 会计2 1,扩张是什么 有时候,你想增加其他的View,比如保管场所 等,你不能用MM02来做编辑,要用MM01来做扩张。这就是扩…...

【Python】Numpy数组的切片、索引详解:取数组的特定行列
【Python】Numpy数组的切片、索引详解:取数组的特定行列 文章目录【Python】Numpy数组的切片、索引详解:取数组的特定行列1. 介绍2. 切片索引2.1 切片索引先验知识2.1 一维数组的切片索引2.3 多维数组的切片索引3. 数组索引(副本)…...
2023年全国最新交安安全员精选真题及答案6
百分百题库提供交安安全员考试试题、交安安全员考试预测题、交安安全员考试真题、交安安全员证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 51.安全生产资金保障制度建立后关键在于落实,各施工企业在落实安全生…...

JavaScript 闭包【自留】
闭包的概念理解 闭包的定义 ✅ 这里先来看一下闭包的定义,分成两个:在计算机科学中和在JavaScript中。 ✅ 在计算机科学中对闭包的定义(维基百科): 闭包(英语:Closure),又称词法闭包(Lexical Closure)或函数闭包(function closures);是在支持头等函数…...

【MySQL】什么是意向锁 IS IX 及值得学习的思想
文章目录前言行锁和表锁使用意向锁意向锁的算法意向锁的思想JDK 中相似的思想前言 之前看 MySQL 都刻意忽略掉了 IS 和 IX 锁,今天看 《MySQL 是怎样运行的》,把意向锁讲的很通透,本篇博文提炼一下思想。 I: Intention Lock(意向…...
python多线程实现
用于线程实现的Python模块 Python线程有时称为轻量级进程,因为线程比进程占用的内存少得多。 线程允许一次执行多个任务。 在Python中,以下两个模块在一个程序中实现线程 - _thread模块threading模块 这两个模块之间的主要区别在于_thread模块将线程视…...

macOS使用CodeRunner快速配置fortran环境
个人网站:xzajyjs.cn 由于一些项目的缘故,需要有fortran的需求,但由于是M1 mac的缘故,不能像windows那样直接使用vsivf这种经典配置。搜了一下网上主流的跨平台方案,主要是gfortran,最近用Coderunner(主要…...

【云原生】k8s 离线部署讲解和实战操作
文章目录一、概述二、前期准备1)节点信息2)修改主机名和配置hosts3)配置ssh互信4)时间同步5)关闭防火墙6)关闭 swap7)禁用SELinux8)允许 iptables 检查桥接流量三、开始部署1&#x…...
【Kubernetes】第十一篇 - 滚动发布的介绍与实现
一,前言 上一篇,介绍了灰度发布和流量切分的集中方式,以及如何实现 k8s 的灰度发布; 本篇,介绍滚动发布的实现; 二,滚动发布简介 滚动发布 滚动发布,则是我们一般所说的无宕机发…...
【尊享版】如何系统构建你的思维认知模型?
超友们,早上好,国庆节快乐~ 今天为你带来的分享是《如何系统构建你的思维认知模型?》,主要分为三个部分: 第一部分:【实现爆发式成长的 10 个思维模型】 第二部分:【6 个不可不知的…...
urho3D编码约定
缩进样式类似于Allman(BSD),即在控制语句的下一行使用大括号,在同一级别缩进。在switch-case语句中,case与switch语句处于相同的缩进级别。 缩进使用4个空格而不是制表符。不应保留空行上的缩进。 类和结构名称以大写…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...