当前位置: 首页 > news >正文

【机器学习合集】模型设计之卷积核设计 ->(个人学习记录笔记)

文章目录

  • 卷积核设计
    • 1. 基于参数压缩的卷积设计
      • 1.1 【1×1卷积】
      • 1.2 【1×1卷积典型应用】
      • 1.3 【小卷积的使用】
    • 2. 基于感受野的卷积设计
      • 2.1 膨胀卷积(带孔卷积,strous convolution)
      • 2.2 可变形卷积
      • 2.3 非局部卷积
    • 3. 基于卷积操作的优化
      • 3.1 移位网络
      • 3.2 加法网络

卷积核设计

  • 卷积核设计是深度学习模型设计中的关键部分,卷积核的大小、形状和数量等方面的选择直接影响了模型的性能和特征提取能力。以下是卷积核设计的一些重要考虑因素:
  1. 卷积核大小和形状
    • 卷积核的大小通常以高度(height)和宽度(width)来定义,通常表示为HxW。
    • 卷积核的大小决定了它在输入上滑动时涵盖的感受野大小。较小的卷积核可以捕获细节信息,而较大的卷积核可以捕获更大尺度的特征。
    • 常见的卷积核大小包括3x3、5x5和1x1。3x3卷积核是最常用的,因为它可以有效地捕获局部特征。
  2. 卷积核的数量
    • 卷积核的数量决定了网络中卷积层的复杂度和模型的表达能力。更多的卷积核意味着网络可以学习更多不同的特征。
    • 常见的卷积核数量包括16、32、64等。通常,随着网络深度的增加,卷积核数量也会逐渐增加。
  3. 步幅(Stride)
    • 步幅决定了卷积操作在输入上滑动的距离。较大的步幅会导致输出特征图的尺寸减小,而较小的步幅会保持尺寸。
    • 大步幅卷积可以减小输出尺寸,从而减小计算复杂度,适用于池化操作的替代。小步幅卷积可以保持输出尺寸,有助于保留更多的空间信息。
  4. 填充(Padding)
    • 填充决定了卷积操作在输入的边缘是否允许部分重叠。零填充(Zero-padding)是常见的,可以保持输出尺寸与输入尺寸相同。
    • 有效的填充可以防止输出特征图在卷积操作中缩小得太快,有助于保留边缘信息。
  5. 卷积核的初始化
    • 卷积核的初始化方式对模型的收敛速度和性能有重要影响。常见的初始化方法包括随机初始化、Xavier初始化和He初始化,选择适合任务的初始化方法非常重要。
  6. 多尺度卷积
    • 为了提取不同尺度的特征,可以使用多尺度的卷积核。这可以通过在同一层使用不同大小的卷积核来实现。
  7. 转移学习
    • 可以使用预训练的卷积核,如在ImageNet数据集上预训练的卷积核,然后微调它们以适应特定任务。这通常可以加速模型的训练并提高性能。
  • 在设计卷积核时,需要根据具体任务和数据集的需求进行权衡和实验,以找到最佳的配置。通常,模型设计是一个迭代的过程,需要不断尝试不同的卷积核大小、数量和结构,以找到最适合任务的模型架构。

1. 基于参数压缩的卷积设计

1.1 【1×1卷积】

  • 卷积核的尺寸等于1的特例,来自《Network in Network》
    在这里插入图片描述

1.2 【1×1卷积典型应用】

  • InceptionNet , Xception/MobileNet,SqueezeNet,ResNet/ResNext
    在这里插入图片描述

1.3 【小卷积的使用】

  • DC Ciresan等人在Flexible, high performance convolutional neural networks for image classification”中研究表明使用更小的卷积是有利的
    在这里插入图片描述

2. 基于感受野的卷积设计

2.1 膨胀卷积(带孔卷积,strous convolution)

  • Google在图像分割系列模型Deeplab中提出了膨胀卷积,不增加实际计算量,但拥有更大的感受野。
    在这里插入图片描述
  • 并行模型与串联模型
    在这里插入图片描述

2.2 可变形卷积

  • 更灵活的感受野(active convolution , deformable convolution)
    在这里插入图片描述

2.3 非局部卷积

  • Non-local卷积-全局感受野
    在这里插入图片描述

3. 基于卷积操作的优化

3.1 移位网络

  • ShiftNet使用移位操作来代替卷积操作,Depthwise Convolution的简化,大大降低了计算量
    在这里插入图片描述
    在这里插入图片描述

3.2 加法网络

  • AdderNet去除了卷积操作中的乘法,只使用加法
    在这里插入图片描述
    在这里插入图片描述

注意:部分内容来自阿里云天池

相关文章:

【机器学习合集】模型设计之卷积核设计 ->(个人学习记录笔记)

文章目录 卷积核设计1. 基于参数压缩的卷积设计1.1 【11卷积】1.2 【11卷积典型应用】1.3 【小卷积的使用】 2. 基于感受野的卷积设计2.1 膨胀卷积(带孔卷积,strous convolution)2.2 可变形卷积2.3 非局部卷积 3. 基于卷积操作的优化3.1 移位网络3.2 加法网络 卷积核…...

JS实现用户二次确认后再提交表单

HTML代码 <form id"importForm" action"" method"post" enctype"multipart/form-data" onsubmit"return confirmSubmit()"> ...... <input id"btnImportSubmit" class"btn btn-primary" type…...

1992-2021年全国各省经过矫正的夜间灯光数据(GNLD、VIIRS)

1992-2021年省市县经过矫正的夜间灯光数据&#xff08;GNLD、VIIRS&#xff09; 1、时间&#xff1a;1992-2021年3月&#xff0c;其中1992-2013年为年度数据&#xff0c;2013-2021年3月为月度数据 2、来源&#xff1a;DMSP、VIIRS 3、范围&#xff1a;31省 4、指标解释&…...

JMeter的使用——傻瓜式学习【中】

目录 前言 1、JMeter参数化 1.1、什么是参数化 1.2、用户定义的变量 1.2.1、什么时候使用用户定义的变量 1.2.2、使用“用户定义的变量”进行参数化的步骤&#xff1a; 1.2.3、案例 1.3、用户参数 1.3.1、什么时候使用用户参数&#xff1f; 1.3.2、使用“用户参数”进…...

MyBaties存储和查询json格式的数据(实体存储查询版本)

最近在做的功能&#xff0c;由于别的数据库有值&#xff0c;需要这边的不同入口的进来查询&#xff0c;所以需要同步过来&#xff0c;如果再继续一个一个生成列对应处理感觉不方便&#xff0c;如果没有别的操作&#xff0c;只是存储和查询&#xff0c;那就可以用MySql支持的jso…...

动态规划14:一和零

动态规划14&#xff1a;一和零 题目 474. 一和零 给你一个二进制字符串数组 strs 和两个整数 m 和 n 。 请你找出并返回 strs 的最大子集的长度&#xff0c;该子集中 最多 有 m 个 0 和 n 个 1 。 如果 x 的所有元素也是 y 的元素&#xff0c;集合 x 是集合 y 的 子集 。 …...

C#WPF嵌入字体实例

本文介绍C#WPF嵌入字体实例。 首先创建项目 添加Resources文件夹,添加字体文件,字体文件属性:生成操作为Resources,复制到输出目录:不复制 字体的使用可以采用以下两种方法: 方式一 直接引用 FontFamily="./Resources/#幼圆" 方式二 定义资源 <Applica…...

Linux——Linux权限

Linux权限 前言一、shell命令以及运行原理二、Linux权限的概念Linux权限管理文件访问者的分类&#xff08;人&#xff09;文件类型和访问权限&#xff08;事物属性&#xff09;文件权限值的表示方法文件访问权限的相关设置方法 file指令目录的权限粘滞位 总结 前言 linux的学习…...

android中gradle的kotlin编译配置选项

一、编译配置 1、Android中的配置 使用如下方式开启在Android中的gradle的kotlin编译配置&#xff1a; 该配置在其余平台不可用 android {...compileOptions {sourceCompatibility JavaVersion.VERSION_17targetCompatibility JavaVersion.VERSION_17}kotlinOptions {jvmTar…...

【知识串联】概率论中的值和量(随机变量/数字特征/参数估计)【考研向】【按概率论学习章节总结】(最大似然估计量和最大似然估计值的区别)

就我的概率论学习经验来看&#xff0c;这两个概念极易混淆&#xff0c;并且极为重点&#xff0c;然而&#xff0c;在概率论的前几章学习中&#xff0c;如果只是计算&#xff0c;对这方面的辨析不清并没有问题。然而&#xff0c;到了后面的参数估计部分&#xff0c;却可能出现问…...

NOIP2023模拟6联测27 点餐

题目大意 有 n n n样菜品&#xff0c;每样菜品都有两个权值 a i a_i ai​和 b i b_i bi​&#xff0c;如果你选择了 k k k个菜品&#xff0c;分别为 p 1 , … , p k p_1,\dots,p_k p1​,…,pk​&#xff0c;则你的花费为 ∑ i 1 k a p i max ⁡ i 1 k b p i \sum\limits_{i…...

AMEYA360:类比半导体重磅发布车规级智能高边驱动HD7xxxQ系列

致力于提供高品质芯片的国内优秀模拟及数模混合芯片设计商上海类比半导体技术有限公司(下称“类比半导体”或“类比”)宣布推出重磅新品车规级智能高边驱动HD7xxxQ系列。该系列产品包括车规级单通道高边驱动HD70xxQ和车规级双通道智能高边驱动HD70xx2Q&#xff0c;提供不同通道…...

【HarmonyOS】鸿蒙操作系统架构

HarmonyOS架构 一. 鸿蒙系统定位二. 架构整体遵从分层设计三. HarmonyOS具有的技术特性四. HarmonyOS有三大特征 其它相关推荐&#xff1a; 软考系统架构之案例篇(架构设计相关概念) 系统架构之微服务架构 系统架构设计之微内核架构 所属专栏&#xff1a;系统架构设计师 一. 鸿…...

JSON数据

一、JSON介绍 Android应用程序界面上的数据信息大部分都是通过网络请求从服务器上获取到的&#xff0c;获取到的数据类型常见的就是JSON。JSON是一种新的数据格式&#xff0c;这种格式的数据不可以直接显示到程序的界面上&#xff0c;需要将该数据解析为一个集合或对象的形式才…...

金融领域:怎么保持电力系统连续供应?

银行作为金融领域的关键机构&#xff0c;依赖于高度可靠的电力供应&#xff0c;以保持银行操作的连续性。在电力中断或电力质量问题的情况下&#xff0c;银行可能面临严重的风险&#xff0c;包括数据丢失、交易中断和客户满意度下降。 UPS监控系统在这一背景下变得至关重要&…...

批量重命名文件夹:用数字随机重命名法管理您的文件夹

在文件管理中&#xff0c;文件夹的命名是一项至关重要的任务。一个好的文件夹命名方案可以帮助我们更高效地组织和查找文件。然而&#xff0c;随着时间的推移&#xff0c;我们可能会遇到文件夹数量过多&#xff0c;难以管理和查找的问题。为了解决这个问题&#xff0c;我们可以…...

RPC与HTTP的关系

首选理清楚关系 RPC与HTTP是两个不同维度的东西 HTTP 协议&#xff08;Hyper Text Transfer Protocol&#xff09;&#xff0c;又叫做超文本传输协议&#xff0c;是一种传输协议&#xff0c;平时通过浏览器浏览网页网页&#xff0c;用到的就是 HTTP 协议。 而 RPC&#xff0…...

OpenCV #以图搜图:感知哈希算法(Perceptual hash algorithm)的原理与实验

1. 介绍 感知哈希算法&#xff08;Perceptual Hash Algorithm&#xff0c;简称pHash&#xff09; 是哈希算法的一种&#xff0c;主要用来做相似图片的搜索工作。 2. 原理 感知哈希算法&#xff08;pHash&#xff09;首先将原图像缩小成一个固定大小的像素图像&#xff0c;然后…...

Android多张图片rotation旋转角度叠加/重叠堆放

Android多张图片rotation旋转角度叠加/重叠堆放 <?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"http://schemas.android.com/apk/res-auto"…...

HBuilderX 自定义语法提示

在开发实践中&#xff0c;会使用到各种第三方组件&#xff0c;比如Element UI&#xff0c;通常的做法是到官网中复制模板再在本地根据设计要求进行修改&#xff0c;或是从其它已经实现的组件中复制相似的内容。但每次复制粘贴确实比较麻烦。 在HBuilderx中可以设置代码块来创建…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...