微软Azure文本转音频,保存成MP3文件【代码python3】
标签: 文本转音频并保存mp3文件; 微软Azure;
微软Azure可以将文本转音频,并保存mp3文件,直接上代码
代码格式:python 3
import os
import azure.cognitiveservices.speech as speechsdk# This example requires environment variables named "SPEECH_KEY" and "SPEECH_REGION"
speech_config = speechsdk.SpeechConfig(subscription=os.environ.get('SPEECH_KEY'), region=os.environ.get('SPEECH_REGION'))# The language of the voice that speaks.
speech_config.speech_synthesis_voice_name='zh-CN-YunjianNeural' # 这个男声 有 磁性
text = "讲一个笑话:和朋友去饭店吃饭,要了一盘红烧肉,结果发现怎么咬都咬不动,我顿时就火了,把服务员叫过来喊道:你们这肉怎么咬都咬不动,把你们经理叫来。服务员说:叫我们经理干啥啊,你都咬不动,他能咬得动啊!"
speech_config.set_speech_synthesis_output_format(speechsdk.SpeechSynthesisOutputFormat.Audio24Khz160KBitRateMonoMp3) # 这里配置文件为mp3格式,要保存其它文件格式,修改这里参数
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=None)result = speech_synthesizer.speak_text_async(text).get()
stream = speechsdk.AudioDataStream(result)
stream.save_to_wav_file("D:/file.mp3") # mp3文件保存路径if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:print("Speech synthesized Completed, for text [{}]".format(text))
elif result.reason == speechsdk.ResultReason.Canceled:cancellation_details = result.cancellation_detailsprint("Speech synthesis canceled: {}".format(cancellation_details.reason))if cancellation_details.reason == speechsdk.CancellationReason.Error:if cancellation_details.error_details:print("Error details: {}".format(cancellation_details.error_details))print("Did you set the speech resource key and region values?")
注意:
1,代码运行前,SPEECH_KEY和SPEECH_REGION已生成好,并保存在你的环境变量中。 参考:https://learn.microsoft.com/zh-cn/azure/ai-services/speech-service/get-started-text-to-speech?tabs=windows%2Cterminal&pivots=programming-language-javascript#prerequisites
2,python 要求3.7以上。
参考:
微软Azure Python 示例代码:
https://learn.microsoft.com/zh-cn/azure/ai-services/speech-service/get-started-text-to-speech?tabs=windows%2Cterminal&pivots=programming-language-python#prerequisites
支持不同的语音和声音形式(男声、女声)
https://learn.microsoft.com/zh-cn/azure/ai-services/speech-service/language-support?tabs=tts
作者简介:https://shimo.im/docs/rp3OVwxle2fJn7Am/
上海徐汇
2023年10月29日
相关文章:
微软Azure文本转音频,保存成MP3文件【代码python3】
标签: 文本转音频并保存mp3文件; 微软Azure; 微软Azure可以将文本转音频,并保存mp3文件,直接上代码 代码格式:python 3 import os import azure.cognitiveservices.speech as speechsdk# This example re…...
基于单片机的超声波探伤仪设计
摘要 超声波探伤仪是目前工业制造和现代化检测的重要途径之一,广泛的应用在质量检测和产品检测中,通过使用其产品能够有效地降低产品次品的风险。尽管随着电子技术的发展, 国内出现了一些数字化的超声检测仪器,但其数据处理及扩展…...
idea的设置
1.设置搜索encoding,所有编码都给换为utf-8 安装插件 eval-reset插件 https://www.yuque.com/huanlema-pjnah/okuh3c/lvaoxt#m1pdA 设置活动模板,idea有两种方式集成tomcat,一种是右上角config配置本地tomcat,一种是插件,如果使用插件集成,则在maven,pom.xml里面加上tomcat…...
高等数学啃书汇总重难点(八)向量代数与空间解析几何
持续更新,高数下第一章,整体来说比较简单,但是需要牢记公式,切莫掉以轻心~ 一.向量平行的充要条件 二.向量坐标的线性运算 三.向量的几何性质 四.数量积 五.向量积 六.混合积 七.曲面方程 八.空间曲线方程 九.平面的点法式方程 十…...
C#开发DLL,CAPL调用(CAPL>> .NET DLL)
文章目录 展示说明新建类库工程C# 代码生成dllCAPL脚本调用dll,输出结果展示 ret为dll里函数返回的值。 说明 新建类库工程 在visual studio中建立。 C# 代码 using...
0-1背包问题【穷举法+二维dp数组】
问题描述: 使用穷举法解决0/1背包问题。问题描述:给定n个重量为{w1, w2, … ,wn}、价值为{v1, v2, … ,vn} 的物品和一个容量为C的背包,求这些物品中的一个最有价值的子集,且要能够装到背包中。 穷举法:每件物品装还是…...
nodejs+vue+python+php基于微信小程序的在线学习平台设计与实现-计算机毕业设计
困扰管理层的许多问题当中,在线学习也是不敢忽视的一块。但是管理好在线学习又面临很多麻烦需要解决,例如:如何在工作琐碎,记录繁多的情况下将在线学习的当前情况反应给课程问题管理员决策,等等。 流,开发一个在线学习平台小程序一方面的可能会更合乎时宜,另一方面来…...
Spring学习笔记2 Spring的入门程序
Spring学习笔记1 启示录_biubiubiu0706的博客-CSDN博客 Spring官网地址:https://spring.io 进入github往下拉 用maven引入spring-context依赖 写spring的第一个程序 引入下面依赖,好比引入Spring的基本依赖 <dependency><groupId>org.springframework</groupId&…...
【Linux】虚拟机安装Linux、客户端工具及Linux常用命令(详细教程)
一、导言 1、引言 Linux是一个开源的操作系统内核,它最初由芬兰计算机科学家Linus Torvalds于1991年开发。Linux不同于传统的商业操作系统,它常用于服务器、嵌入式系统和个人电脑等各种平台。 Linux具有很多优点,包括稳定性、安全性和可定制…...
Day 47 动态规划 part13
Day 47 动态规划 part13 解题理解300674718 3道题目 300. 最长递增子序列 674. 最长连续递增序列 718. 最长重复子数组 解题理解 300 dp[i]被设置为以nums[i]为结尾的最长递增子序列长度。 class Solution:def lengthOfLIS(self, nums: List[int]) -> int:if len(nums) …...
【广州华锐互动】飞机诊断AR远程指导系统为工程师提供更多支持
随着科技的发展,飞机的维护工作也在不断进步。其中,AR(增强现实)技术的应用使得远程运维成为可能。本文将探讨AR在飞机诊断远程指导系统中的应用,以及它对未来航空维护模式的影响。 AR远程指导系统是一种使用增强现实技…...
【贝叶斯回归】【第 2 部分】--推理算法
一、说明 在第一部分中,我们研究了如何使用 SVI 对简单的贝叶斯线性回归模型进行推理。在本教程中,我们将探索更具表现力的指南以及精确的推理技术。我们将使用与之前相同的数据集。 二、模块导入 [1]:%reset -sf[2]:import logging import osimport tor…...
【深入浅出汇编语言】寄存器精讲第二期
🌈个人主页:聆风吟 🔥系列专栏:数据结构、算法模板、汇编语言 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. ⛳️物理地址二. ⛳️16位结构的CPU三. ⛳️8086CPU给出物理地址的方…...
如何保证分布式情况下的幂等性
关于这个分布式服务的幂等性,这是在使用分布式服务的时候会经常遇到的问题,比如,重复提交的问题。而幂等性,就是为了解决问题存在的一个概念了。 什么是幂等 幂等(idempotent、idempotence)是⼀个数学与计算机学概念,常⻅于抽象代数中。 在编程中⼀个幂等操作的特点是…...
Mybatis特殊SQL的执行
文章目录 模糊查询批量删除动态设置表名添加功能获取自增的主键自定义映射resultMapresultMap处理字段和属性的映射关系 多对一映射处理级联方式处理映射关系使用association处理映射关系 分步查询1. 查询员工信息 2. 查询部门信息 一对多映射处理collection 模糊查询 /*** 根…...
MyBatis-Flex(一):快速开始
框架介绍 MyBatis-Flex 是一个优雅的 MyBatis 增强框架,它非常轻量、同时拥有极高的性能与灵活性。 MyBatis-Flex 官方文档 说明 本文参照官方文档的【快速开始】 章节,编写 Spring Boot 项目的代码示例。 快速开始 创建数据库表 直接参照官网示…...
Vue组件化
组件 组件是实现应用中局部功能的代码(HTML,CSS,JS)和资源(图片,声音,视频)的集合,凡是采用组件方式开发的应用都可以称为组件化应用 模块是指将一个大的js文件按照模块化拆分规则进行拆分成的每个js文件, 凡是采用模块方式开发的应用都可以称为模块化应用(组件包括模块) 传…...
nodejs+python+php+微信小程序-基于安卓android的健身服务应用APP-计算机毕业设计
考虑到实际生活中在健身服务应用方面的需要以及对该系统认真的分析,将系统权限按管理员和用户这两类涉及用户划分。 则对于进一步提高健身服务应用发展,丰富健身服务应用经验能起到不少的促进作用。 健身服务应用APP能够通过互联网得到广泛的、全面的宣…...
SpringCloud 微服务全栈体系(九)
第九章 Docker 三、Dockerfile 自定义镜像 常见的镜像在 DockerHub 就能找到,但是我们自己写的项目就必须自己构建镜像了。 而要自定义镜像,就必须先了解镜像的结构才行。 1. 镜像结构 镜像是将应用程序及其需要的系统函数库、环境、配置、依赖打包而…...
Mybatis 多对一和一对多查询
文章目录 Mybatis 多对一 and 一对多查询详解数据库需求Mybatis代码注意 Mybatis 多对一 and 一对多查询详解 数据库 员工表 t_emp 部门表 t_dept CREATE TABLE t_emp (emp_id int NOT NULL AUTO_INCREMENT,emp_name varchar(25) CHARACTER SET utf8 COLLATE utf8_general_ci…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
6.9-QT模拟计算器
源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
