【Truffle】二、自定义合约测试
一、准备测试
上期我们自己安装部署了truffle,并且体验了测试用例的整个测试流程,实际开发中,我们可以对自己的合约进行测试。
我们首先先明白自定义合约测试需要几个文件
- 合约文件:既然要测试合约,肯定要有合约的源码文件,以.sol后缀结尾
- 部署文件:测试合约要写一份部署文件,用于在测试中部署合约,以.js后缀结尾
- 测试文件:测试合约的流程文件,用于对合约的方法流程进行测试,以.js后缀结尾
合约文件的话,我们写一个最简单的合约用来测试,合约中定义了一个名为"number" 的无符号整数变量,通过调用 store() 函数,可以将一个无符号整数值存储到 "number" 变量中。然后,可以通过调用 retrieve() 函数来获取存储在 "number" 变量中的值。
// SPDX-License-Identifier: GPL-3.0pragma solidity >=0.8.2 <0.9.0;/*** @title Storage* @dev Store & retrieve value in a variable* @custom:dev-run-script ./scripts/deploy_with_ethers.ts*/
contract Storage {uint256 number;/*** @dev Store value in variable* @param num value to store*/function store(uint256 num) public {number = num;}/*** @dev Return value * @return value of 'number'*/function retrieve() public view returns (uint256){return number;}
}
我们把它存放到工作目录中的contracts目录下,命名为storage.sol
部署文件,固定的格式,可以参考之前下载的测试用例修改一下即可
const Storage = artifacts.require("Storage");module.exports = function (deployer) {deployer.deploy(Storage);
};
我们把它存放在migrations目录下,命名为1_deploy_contracts.js
最后是测试文件,因为这个合约只有两个方法,所以我们两个方法都要进行测试,测试用例命名为Storage_test.js
const Storage = artifacts.require("Storage");contract("Storage", (accounts) => {let storageInstance;before(async () => {storageInstance = await Storage.deployed();});it("should store a value", async () => {const newValue = 42;await storageInstance.store(newValue);const storedValue = await storageInstance.retrieve();assert.equal(storedValue, newValue, "Value was not stored correctly");});it("should retrieve the stored value", async () => { const storedValue = await storageInstance.retrieve();assert.equal(storedValue, 42, "Stored value is incorrect");});
});
最后的目录结构是这样的:

二、开始测试:
和之前测试用例的测试方法一样,我们已经配置好了文件位置,现在可以开始测试啦
测试流程为:truffle develop(启用测试网络) => compile(编译合约) => migrate(部署合约) => test(测试合约)
truffle develop

compile

migrate

test
测试成功,我们看到,测试文档里的两个方法都通过了,至此,我们完成了自定义合约测试的整体流程。
相关文章:
【Truffle】二、自定义合约测试
一、准备测试 上期我们自己安装部署了truffle,并且体验了测试用例的整个测试流程,实际开发中,我们可以对自己的合约进行测试。 我们首先先明白自定义合约测试需要几个文件 合约文件:既然要测试合约,肯定要有合约的源码…...
场景交易额超40亿,海尔智家三翼鸟开始收获
文 | 螳螂观察 作者 | 余一 随着双十一的到来,国内的消费情绪再次被点燃。在这类大促之下,品牌们就像一个个天体,不断引动着市场潮汐,期待自己能触发更大的“海潮效应”。 所谓“海潮效应”是指,海水因天体的引力而…...
众和策略可靠吗?股票扛杆怎么玩?
可靠 股票扛杆是一种出资战略,经过假贷资金来增加出资金额,从而进步出资收益。这种战略在股票商场中被广泛运用,但一起也伴随着一定的危险。在本文中,咱们将从多个视点来剖析股票扛杆怎么玩。 首要,扛杆出资的原理是…...
解决连接Mysql出现ERROR 2013 (HY000): Lost connection to MySQL server at ‘waiting
在上一篇中解决Mysql ER_ACCESS_DENIED_ERROR: Access denied for user ‘root‘‘localhost‘ (using password: YES)-CSDN博客 写了mysql的密码报错问题,在执行 mysql -u root -p 出现了这个错误, ERROR 2013 (HY000): Lost connection to MySQL se…...
Hadoop YARN功能介绍--资源管理、调度任务
Hadoop YRAN介绍 YARN是一个通用资源管理系统平台和调度平台,可为上层应用提供统一的资源管理和 调度。 他的引入为集群在利用率、资源统一管理和数据共享等方面带来了好处。 1.资源管理系统 集群的硬件资源,和程序运行无关,比如内存、cu…...
从AlexNet到chatGPT的演进过程
一、演进 AlexNet(2012): AlexNet是深度学习领域的重要突破,包括5个卷积层和3个全连接层。使用ReLU激活函数和Dropout正则化,获得了ImageNet图像分类比赛的胜利。引入了GPU加速训练,大幅提高了深度神经网络…...
Unity如何实现bHaptics TrackSuit震动衣的SDK接入
前言 TrackSuit是bHaptisc公司旗下的一款震动衣,包括X16,X40等不同型号,是一款尖端的无线高级触觉背心,采用人体工程学设计,具有40个精确的触觉反馈点。通过无缝的跨平台支持和无限制、无滞后的游戏体验,增强您的VR冒险体验。用于PC或者VR游戏中高度还原真实射击触感。官…...
识别flink的反压源头
背景 flink中最常见的问题就是反压,这种情况下我们要正确的识别导致反压的真正的源头,本文就简单看下如何正确识别反压的源头 反压的源头 首先我们必须意识到现实中轻微的反压是没有必要去优化的,因为这种情况下是由于偶尔的流量峰值,Task…...
Spring是如何解决bean循环依赖的问题的
在Spring框架中,循环依赖是指两个或多个Bean之间相互依赖,形成了一个闭环的依赖关系。当存在循环依赖时,Bean的创建过程会陷入死循环,导致应用程序无法启动或出现异常。 说到循环依赖,首先我先说说bean的三级缓存 在S…...
[移动通讯]【Carrier Aggregation-9】【 Radio Resource Control (RRC) Aspects】
前言: CA 分析辅助工具: UE Capabilities 目录: 总体流程 Radio Resource Control (RRC) Aspects SCell addition and removal Handover 一 总体流程 1.1 CA 总体流程 1.2 CA 和 NSA 区别 NSA 我理解也是一种特殊的CA 方案&…...
故障预测与健康管理(PHM)的由来以及当前面临的挑战
故障预测与健康管理(PHM)作为一项关键技术,旨在帮助企业在事故发生之前较长时间内实现故障预测与健康管理,达到“治未病”的效果。PHM的发展源于对设备可靠性和安全性的追求,以及对预测性维护的需求。然而,…...
【ChatGPT瀑布到水母】AI 在驱动软件研发的革新与实践
这里写目录标题 前言内容简介作者简介专家推荐读者对象目录直播预告 前言 计算机技术的发展和互联网的普及,使信息处理和传输变得更加高效,极大地改变了金融、商业、教育、娱乐等领域的运作方式。数据分析、人工智能和云计算等新兴技术,也在不…...
【Django】项目模型
Django的基本命令 django-admin 命令含义startproject启动Django项目startapp启动Django应用check检查项目完整性runserver本地运行项目shell进入Django项目的Python Shell环境test 进行Django用例测试makemigrations创建模型变更的迁移文件migrate执行makemigrations…...
字符集详解
常见字符集介绍 字符集基础知识: 计算机底层不可以直接存储字符的。 计算机中底层只能存储二进制(0、1) 。 二进制是可以转换成十进制的。 结论:计算机底层可以表示成十进制编号。计算机可以给人类字符进行编号存储,这套编号规则就是字符…...
Vert.x学习笔记-什么是Vert.x
Vert.x介绍 用官网的一句话来总结:Vert.x是用于在JVM上构建响应式应用程序的工具包,项目初期的目标是成为“JVM版的Node.js”,但是后续的发展逐渐偏离了初期的目标,变成了一个给JVM提供量身定制的异步编程基础框架的工具包。 Ver…...
AcWing 第127场周赛 构造矩阵
构造题目,考虑去除掉最后一行最后一列先进行考虑,假设除了最后一行和最后一列都已经排好了(你可以随便排),那么分析知最后一个数字由限制以外其他都已经确定了,无解的情况是k为-1 并且n,m的奇偶…...
Seata入门系列【15】@GlobalLock注解使用场景及源码分析
1 前言 在Seata 中提供了一个全局锁注解GlobalLock,字面意思是全局锁,搜索相关文档,发现资料很少,所以分析下它的应用场景和基本原理,首先看下源码中对该注解的说明: // 声明事务仅在单个本地RM中执行 //…...
Dubbo 路由及负载均衡性能优化
作者:vivo 互联网中间件团队- Wang Xiaochuang 本文主要介绍在vivo内部针对Dubbo路由模块及负载均衡的一些优化手段,主要是异步化缓存,可减少在RPC调用过程中路由及负载均衡的CPU消耗,极大提升调用效率。 一、概要 vivo内部Java…...
Python数据可视化入门指南
Matplotlib和Plotly是两个在Python中广泛使用的数据可视化库,它们具有丰富的API和功能,用于创建各种类型的图表和图形。在本篇博客中,我们将介绍它们的主要特点和基本用法。 Matplotlib 主要特点: 高度自定义: Matp…...
我的ChatGPT的几个使用场景
示例一,工作辅助、写函数代码: 这里展示了一个完整的代码,修正,然后最终输出的过程。GPT具备足够丰富的相关的小型代码生成能力,语法能力也足够好。这类应用场景,在我的GPT使用中,能占到65%以上…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
