基于深度学习网络的美食检测系统matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
5.算法完整程序工程
1.算法运行效果图预览
2.算法运行软件版本
matlab2022a
3.部分核心程序
% 图像大小
image_size = [224 224 3];
num_classes = size(VD,2)-1;% 目标类别数量
anchor_boxes = [% 预定义的锚框大小43 5918 2223 2984 109];
% 加载预训练的 ResNet-50 模型
load Model_resnet50.mat% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);options = trainingOptions('sgdm', ...'MiniBatchSize', 8, ....'InitialLearnRate',1e-3, ...'MaxEpochs',100,...'CheckpointPath', checkpoint_folder, ...'Shuffle','every-epoch', ...'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);
0077
4.算法理论概述
美食检测是一项利用计算机视觉技术来识别和分类食物图像的任务。
特征提取是食品检测的核心步骤,其目的是从输入图像中提取出有效的特征,以便于后续的分类。常见的特征提取方法包括手工提取特征和深度学习网络提取特征。
手工提取特征:通过人工选择一些与食品相关的特征,如颜色、纹理、形状等,然后使用传统的计算机视觉技术(如SIFT、HOG等)提取这些特征。
深度学习网络提取特征:使用深度学习网络对输入图像进行自动的特征提取。常见的深度学习网络包括卷积神经网络(CNN)和循环神经网络(RNN)等。
CNN提取特征:CNN是一种基于卷积层的深度学习网络,其特点是能够自动从输入图像中学习到有效的特征。CNN主要由卷积层、池化层和全连接层组成。卷积层可以提取输入图像中的局部特征,池化层可以降低特征的维度,全连接层可以将局部特征组合成全局特征。CNN的常用结构包括VGG、ResNet和Inception等。
RNN提取特征:RNN是一种基于递归神经网络的深度学习网络,其特点是能够处理序列数据(如文本、语音和视频等)。在食品检测中,RNN可以用于对食品序列进行分析和处理。常见的RNN结构包括LSTM和GRU等。
YoloV2是一种基于深度学习的目标检测算法,由Joseph Redmon等人在2016年提出。相比于其他目标检测算法,YoloV2具有较高的检测速度和准确性,同时能够同时检测多个目标,因此在美食检测等应用场景中具有较好的表现。
YoloV2的主要原理是通过对输入图像进行网格划分,将每个网格视为一个单元格,然后在每个单元格中预测多个目标框及其所属类别。相比于其他目标检测算法,YoloV2的独特之处在于其将目标检测任务转化为一个单次前向传递的回归问题,即将目标框的位置和类别预测问题转化为一个端到端的回归问题。
具体来说,YoloV2采用CNN作为骨干网络,通过对CNN的最后一层进行修改,将输出特征图的大小调整为指定的大小,使得每个特征点对应于输入图像上的一个像素点。然后,对于每个特征点,YoloV2通过一个轻量级的全连接层来预测目标框的位置和类别概率。同时,为了解决不同尺寸的目标框对预测结果的影响,YoloV2采用多尺度预测的方法,即在多个不同尺寸的特征图上进行预测。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:

基于深度学习网络的美食检测系统matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 % 图像大小 image_size [224 224 3]; num_classes size(VD,2)-1;% 目标类别数量…...

人工智能基础_机器学习006_有监督机器学习_正规方程的公式推导_最小二乘法_凸函数的判定---人工智能工作笔记0046
我们来看一下公式的推导这部分比较难一些, 首先要记住公式,这个公式,不用自己理解,知道怎么用就行, 比如这个(mA)T 这个转置的关系要知道 然后我们看这个符号就是求X的导数,X导数的转置除以X的导数,就得到单位矩阵, 可以看到下面也是,各种X的导数,然后计算,得到对应的矩阵结…...

【MongoDB】Windows 安装MongoDB 6.0
一、下载安装包 安装包下载地址https://www.mongodb.com/try/download/community这里我选择的是 二、解压并安装 1、解压 这里我将压缩包解压到了D盘,并重命名成了mongodb,解压后的目录如下: 2、创建配置文件 在D:\mongodb下新建conf目录…...

DM8 Dokcer镜像更新后远程无法jdbc连接问题
背景:原来官网下的dm8docker镜像有效期只有两个星期,问他们商务申请了新的dm8镜像,准备简单升级一下镜像再引入原来的database 先说结论:jdbc驱动要更新 官网dm8驱动链接地址 原来的tag镜像 dm8_single:v8.1.2.128_ent_x86_64…...

AI:39-基于深度学习的车牌识别检测
🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌本专栏包含以下学习方向: 机器学习、深度学…...
软考 系统架构设计师系列知识点之系统架构评估(1)
所属章节: 第8章. 系统质量属性与架构评估 第2节. 系统架构评估 1. 概述 系统架构评估是在对架构分析、评估的基础上,对架构策略的选取进行决策。它利用数学或逻辑分析技术,针对系统的一致性、正确性、质量属性、规划结果等不同方面&#x…...

Spark UI中Shuffle dataSize 和shuffle bytes written 指标区别
背景 本文基于Spark 3.1.1 目前在做一些知识回顾的时候,发现了一些很有意思的事情,就是Spark UI中ShuffleExchangeExec 的dataSize和shuffle bytes written指标是不一样的, 那么在AQE阶段的时候,是以哪个指标来作为每个Task分区大…...
Java——Map.getOrDefault方法详解
Java——Map.getOrDefault方法详解 Map.getOrDefault(Object key, V defaultValue)是Java中Map接口的一个方法,用于获取指定键对应的值,如果键不存在,则返回一个默认值。 该方法的签名如下: V getOrDefault(Object key, V defau…...

银河集团香港优才计划95分获批案例展示!看看是如何申请的?
银河集团香港优才计划95分获批案例展示!看看是如何申请的? 今天来分享一则银河集团香港优才计划获批案例!客户本科学历非名校、从事业务支援及人力资源行业,优才打分95分,这个条件可能在很多人的印象里,会觉…...
Python class中以`_`开头的类特殊方法
在学基础的时候没学到过(可能见过但是又忘了),在学习深度学习项目的时候遇见了很多; 以论文Multi-label learning from single positive label为例; 这些方法都是程序自行调用的,不需要(也不可以…...
2023云栖大会开幕:全球数万开发者参会,展现AI时代的云计算创新
10月31日,2023云栖大会在杭州开幕,大会吸引全球数万开发者参会。阿里巴巴集团董事会主席蔡崇信在致辞中表示,今年云栖大会主题回归“计算,为了无法计算的价值”,这也是2015年云栖大会的主题,当时云计算支撑…...

[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线
在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。 PythonTDengine从零开始搭建量化分析平台-MA均线的多种实现方式 高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数,便捷又省事。 并且用 Pandas 直接对之…...

KaiwuDB 获山东省工信厅“信息化应用创新优秀解决方案”奖
10月23日,山东省工信厅正式公示《2023年山东省信息化应用创新典型应用案例及优秀解决方案名单》,面向全省、全国重点推荐山东省技术水平先进、应用示范效果突出、产业带动性强的信息化解决方案及应用实践,对于进一步激发山东省信息技术产业创…...

Python-常用的量化交易代码片段
算法交易正在彻底改变金融世界。通过基于预定义标准的自动化交易,交易者可以以闪电般的速度和比以往更精确的方式执行订单。如果您热衷于深入了解算法交易的世界,本指南提供了帮助您入门的基本代码片段。从获取股票数据到回溯测试策略,我们都能满足您的需求! 1. 使用 YFina…...
Netty优化-rpc
Netty优化-rpc 1.3 RPC 框架1)准备工作 1.3 RPC 框架 1)准备工作 这些代码可以认为是现成的,无需从头编写练习 为了简化起见,在原来聊天项目的基础上新增 Rpc 请求和响应消息 Data public abstract class Message implements …...
【Docker 内核详解】cgroups 资源限制(一):概念、作用、术语
cgroups 资源限制(一):概念、作用、术语 1.cgroups 是什么2.cgroups 的作用3.cgroups 术语表 当谈论 Docker 时,常常会聊到 Docker 的实现方式。很多开发者都知道,Docker 容器本质上是宿主机上的进程(容器所…...

MATLAB——一维小波的多层分解
%% 学习目标:一维小波的多层分解 clear all; close all; load noissin.mat; xnoissin; [C,L]wavedec(x,3,db4); % 3层分解,使用db4小波 [cd1,cd2,cd3]detcoef(C,L,[1,2,3]); % 使用detcoef函数获取细节系数 ca3appcoef(C,L,db4,3); …...

C++的拷贝构造函数
目录 拷贝构造函数一、为什么用拷贝构造二、拷贝构造函数1、概念2、特征1. 拷贝构造函数是构造函数的一个重载形式。2. 拷贝构造函数的参数3. 若未显式定义,编译器会生成默认的拷贝构造函数。4. 拷贝构造函数典型调用场景 拷贝构造函数 一、为什么用拷贝构造 日期…...

【手机端远程连接服务器】安装和配置cpolar+JuiceSSH:实现手机端远程连接服务器
文章目录 1. Linux安装cpolar2. 创建公网SSH连接地址3. JuiceSSH公网远程连接4. 固定连接SSH公网地址5. SSH固定地址连接测试 处于内网的虚拟机如何被外网访问呢?如何手机就能访问虚拟机呢? cpolarJuiceSSH 实现手机端远程连接Linux虚拟机(内网穿透,手机端连接Linux虚拟机) …...

Jupyter Notebook的使用
文章目录 Jupyter Notebook一、Jupyter Notebook是什么?二、使用步骤1.安装Miniconda2.安装启动**Jupyter Notebook**3.一些问题 三、Jupyter Notebook的操作1.更换解释器2.在指定的文件夹中打开3 运行的快捷键 四.报错解决1.画图的时候出现报错2.画图的时候空白3.p…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...