当前位置: 首页 > news >正文

Spark新特性与核心概念

一、Sparkshuffle

        (1)Map和Reduce

        在shuffle过程中,提供数据的称之为Map端(Shuffle Write),接受数据的称之为Redeuce端(Shuffle Read),在Spark的两个阶段中,总是前一个阶段产生一批Map提供数据,下一阶段产生一批Reduce接收数据。

        (2)Shuffle管理器

        ①HashShuffleManager

        HashShuffleManager是Spark的一个组件,用于实现在节点之间进行数据分发和合并。它的主要作用是将数据进行随机哈希分区,然后将不同分区的数据发送到不同的节点上进行处理,最后将结果合并返回给调用方。HashShuffleManager的优点是能够高效地处理大规模数据集,同时保证数据的顺序性和数据安全性。它一共分为两种,一种有优化,一种无优化。

未经优化的HashShuffleManager

        优化后的和未优化的一致,不同点在于
        1. 在一个Executor内, 不同Task是共享Buffer缓冲区
        2. 这样减少了缓冲区乃至写入磁盘文件的数量, 提高性能

优化后的HashShuffleManager

        ②SortShuffleManager

        SortShuffleManager是Spark的一个组件,用于实现在节点之间进行数据分发和合并。与HashShuffleManager不同的是,SortShuffleManager使用的是排序方式进行数据分发和合并。相对于HashShuffleManager,SortShuffleManager的优点是能够更好地保证数据的有序性,减少数据倾斜的情况,提高数据处理效率。但是,SortShuffleManager需要进行排序操作,需要占用更多的计算资源和时间。因此,在不同的使用场景下,可以选择合适的ShuffleManager来实现数据分发和合并。

        SortShuffleManager的运行机制主要分成两种,一种是普通运行机制,另一种是bypass运行机制。        

普通运行机制
bypass运行机制

        bypass运行机制的触发条件如下:
        (1)shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold=200参数的值。
        (2)不是聚合类的shuffle算子(比如reduceByKey)。
        同普通机制基本类同, 区别在于, 写入磁盘临时文件的时候不会在内存中进行排序而是直接写,最终合并为一个task一个最终文件。

        与普通模式IDE区别在于:
        第一,磁盘写机制不同。
        第二,不会进行排序。也就是说,启用该机制的最大好处在于,shuffle write过程中,不需要进行数据的排序操作,也就节省掉了这部分的性能开销。

二、Spark3新特性概览

        (1)Adaptive Query Execution 自适应查询(SparkSQL)

        由于缺乏或者不准确的数据统计信息(元数据)和对成本的错误估算(执行计划调度)导致生成的初始执行计划不理想。在Spark3.x版本提供Adaptive Query Execution自适应查询技术,通过在”运行时”对查询执行计划进行优化,允许Planner在运行时执行可选计划,这些可选计划将会基于运行时数据统计进行动态优化,从而提高性能。
        Adaptive Query Execution AQE主要提供了三个自适应优化:
                ①动态合并Shuffle Partitions
                ②动态调整Join策略
                ③动态优化倾斜Join(Skew Joins)

        开启AQE方式:
        set spark.sql.adaptive.enabled = true;

        ①动态合并Dynamically coalescing shuffle partitions

        可以动态调整shuffle分区的数量。用户可以在开始时设置相对较多的shuffle分区数,AQE会在运行时将相邻的小分区合并为较大的分区。


        

        ②动态调整Join策略Dynamically switching join strategies
        此优化可以在一定程度上避免由于缺少统计信息或着错误估计大小(当然也可能两种情况同时存在),而导致执行计划性能不佳的情况。这种自适应优化可以在运行时sort merge join转换成broadcast hash join,从而进一步提升性能。

        ③动态优化倾斜Join
        skew joins可能导致负载的极端不平衡,并严重降低性能。在AQE从shuffle文件统计信息中检测至J任何倾斜后,它可以将倾斜的分区分割成更小的分区,并将它们与另一侧的相应分区连接起来。这种优化可以并行化倾斜处理,获得更好的整体性能。

        触发条件:
        1.分区大小> spark.sql.adaptive.skewJoin.skewedPartitionFactor (default=10) * "median partition size(中位数分区大小)"

        2.分区大小 > spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes (default = 256MB)

       ④AQE总结
        1.AQE的开启通过: spark.sql.adaptive.enabled设置为true开启。

        2.AQE是自动化优化机制,无需我们设置复杂的参数调整,开启AQE符合条件即可自动化应用AQE优化。

        3.AQE带来了极大的SparkSQL性能提升。

        (2)Dynamic Partition Pruning动态分区裁剪(SparkSQL)

        当优化器在编译时无法识别可跳过的分区时,可以使用"动态分区裁剪",即基于运行时推断的信息来进一步进行分区裁剪。这在星型模型中很常见,星型模型是由一个或多个并且引用了任意数量的维度表的事实表组成。在这种连接操作中,我们可以通过识别维度表过滤之后的分区来裁剪从事实表中读取的分区。在一个TPC-DS基准测试中,102个查询中有60个查询获得2到18倍的速度提升。

        (3)增强的Python APl: PySpark和Koalas

        Python现在是Spark中使用较为广泛的编程语言,因此也是Spark 3.0的重点关注领域。Databricks有68%的notebook命令是用Python写的。PySpark在 Python Package lndex上的月下载量超过500万。

        很多Python开发人员在数据结构和数据分析方面使用pandas APl,但仅限于单节点处理。Databricks会持续开发Koalas——基于Apache Spark的pandas API实现,让数据科学家能够在分布式环境中更高效地处理大数据。
        经过一年多的开发,Koalas实现对pandas API将近80%的覆盖率。Koalas每月PyPI下载量已迅速增长到85万,并以每两周一次的发布节奏快速演进。虽然Koalas可能是从单节点pandas代码迁移的最简单方法,但很多人仍在使用PySpark API,也意味着
PySpark API也越来越受欢迎。

三、Spark核心概述

相关文章:

Spark新特性与核心概念

一、Sparkshuffle (1)Map和Reduce 在shuffle过程中,提供数据的称之为Map端(Shuffle Write),接受数据的称之为Redeuce端(Shuffle Read),在Spark的两个阶段中,总…...

设计模式_状态模式

状态模式 介绍 设计模式定义案例问题堆积在哪里解决办法状态模式一个对象 状态可以发生改变 不同的状态又有不同的行为逻辑游戏角色 加载不同的技能 每个技能有不同的:攻击逻辑 攻击范围 动作等等1 状态很多 2 每个状态有自己的属性和逻辑每种状态单独写一个类 角色…...

css 某个元素被挤的显示不完整,如何显示完整

加一行 flex-shrink: 0;解决...

pve lxc debian 11安装docker遇到bash: sudo: command not解决办法

pve创建LXC容器,使用debian 11模版,安装完成后正常换源、安装依赖 然后添加Docker 的官方 GPG 密钥时出错: $ curl -fsSL https://mirrors.ustc.edu.cn/docker-ce/linux/debian/gpg | sudo apt-key add - 提示 bash: sudo: command not …...

springboot的缓存和redis缓存,入门级别教程

一、springboot(如果没有配置)默认使用的是jvm缓存 1、Spring框架支持向应用程序透明地添加缓存。抽象的核心是将缓存应用于方法,从而根据缓存中可用的信息减少执行次数。缓存逻辑是透明地应用的,对调用者没有任何干扰。只要使用…...

语雀P0级时间爆发,留给运维的时间不多了?

事件背景 打工人的焦虑,已经延伸到在线文档了。近日,语雀P0级故障想必大家都有所体会,宕机近8小时,笔记、离线同步完全不可用。作为用户尤其担心我的文档资料是否会因此消失。 这泼天的8小时,放眼互联网界也是相当炸裂…...

LeetCode 2401.最长优雅子数组 ----双指针+位运算

数据范围1e5 考虑nlog 或者n的解法&#xff0c;考虑双指针 因为这里要求的是一段连续的数组 想起我们的最长不重复连续子序列 然后结合一下位运算就好了 是一道双指针不错的题目 class Solution { public:int longestNiceSubarray(vector<int>& nums) {int n nums…...

NOIP2023模拟6联测27 无穷括号序列

题目大意 小 C C C有一个括号序列 A A A&#xff0c;其长度为 m m m&#xff0c;且序列元素只包含左右括号。他想生成一个无限长的括号序列 B B B&#xff0c;由于 B B B的长度为正无穷&#xff0c;所以其下标可以为任意整数&#xff08;可以为负&#xff09;。为了由 A A A生…...

java spring cloud 工程企业管理软件-综合型项目管理软件-工程系统源码

Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目显示…...

openEuler 22.03 x86架构下docker运行arm等架构的容器——筑梦之路

为什么要这样做&#xff1f; 随着国产化的普及&#xff0c;国家政策对信创产业的支持&#xff0c;尤其一些金融证券行业、政府单位等&#xff0c;逐渐开始走国产化信创的路线&#xff0c;越来越多接触到国产 CPU &#xff08;arm 平台&#xff0c;比如华为的鲲鹏处理器&#xf…...

【Java】HashMap常见的面试题

HashMap常见面试题 1.HashMap key 是否可以是为 我们自定义对象&#xff1f;——可以 2.HashMap 存储数据 有序还是无序&#xff1f;——无序 3.HashMap key 是否可以存放 null值&#xff1f;如果可以的话 存放在 数组中那个位置&#xff1f;——可以;存放在 index0的位置 4.Ha…...

openpnp - src - 配置文件载入过程的初步分析

文章目录 openpnp - src - 配置文件载入过程的初步分析概述笔记自己编译用的git版本报错截图问题1 - 怎么在调试状态下, 定位到抛异常的第一现场?结合单步调试找到的现场, 来分析报错的原因openpnp配置文件读取的流程END openpnp - src - 配置文件载入过程的初步分析 概述 从…...

中国各城市土地利用类型(城市功能)数据集(shp)

中国各城市土地利用类型(城市功能)数据集 时间:2018年 全国范围的城市用地类型数据(居住/商业/交通用地等共计11类) 分类:居住用地、商业用地、工业用地、医疗设施用地、体育文化设施用地、交通场站用地、绿地等用地类型 含城市编码、一级分类5个、二级分类11个 数据按…...

Linux网络编程:数据链路层

目录 一. 数据链路层概述 二. 以太网 2.1 以太网的概念 2.2 以太网数据帧 2.3 对于MAC地址的认识 2.4 数据碰撞问题 三. MTU和MSS 3.1 什么是MTU 3.2 MTU对UDP的影响 3.3 MTU对TCP的影响&#xff08;MSS的概念&#xff09; 四. ARP协议 4.1 ARP协议的作用 4.2 ARP数…...

python 线程 超时时间

python 线程 超时时间_mob649e815f0f18的技术博客_51CTO博客...

LeetCode:274. H 指数、275. H 指数 II(C++)

目录 274. H 指数 题目描述&#xff1a; 实现代码与解析&#xff1a; 排序暴力 275. H 指数 II 题目描述&#xff1a; 实现代码与解析&#xff1a; 二分 比较简单&#xff0c;不再写解析&#xff0c;注意二分的时候&#xff0c;r指针为n&#xff0c;含义为个数&#xf…...

多线程及锁

1.lock锁和synchronized锁的区别。 1&#xff1a;Synchronized 是Java的一个关键字&#xff0c;而Lock是java.util.concurrent.Locks 包下的一个接口&#xff1b; 2&#xff1a;Synchronized 使用过后&#xff0c;会自动释放锁&#xff0c;而Lock需要手动上锁、手动释放锁&am…...

C++ 写一个Data类的注意问题

Data类 声明和定义分离的一些问题 声明里面我们不带缺省参数&#xff0c;定义我们给缺省参数&#xff0c;如下面两段代码&#xff1a; Data.h#pragma once #include<iostream> using namespace std; class Data { public:Data(int year,int month,int day);private:in…...

postman做接口测试

之前搞自动化接口测试&#xff0c;由于接口的特性&#xff0c;要验证接口返回xml中的数据&#xff0c;所以没找到合适的轮子&#xff0c;就自己用requests造了个轮子&#xff0c;用着也还行&#xff0c;不过就是case管理有些麻烦&#xff0c;近几天又回头看了看postman也可以玩…...

hdlbits系列verilog解答(always块)-29

文章目录 一、问题描述二、verilog源码三、仿真结果一、问题描述 由于数字电路由用网线连接的逻辑门组成,因此任何电路都可以表示为模块和赋值语句的某种组合。然而,有时这不是描述电路的最方便方式。过程procedure(其中 always 的块就是一个示例)提供了描述电路的替代语法…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...