css 某个元素被挤的显示不完整,如何显示完整
加一行
flex-shrink: 0;
解决
相关文章:
css 某个元素被挤的显示不完整,如何显示完整
加一行 flex-shrink: 0;解决...
pve lxc debian 11安装docker遇到bash: sudo: command not解决办法
pve创建LXC容器,使用debian 11模版,安装完成后正常换源、安装依赖 然后添加Docker 的官方 GPG 密钥时出错: $ curl -fsSL https://mirrors.ustc.edu.cn/docker-ce/linux/debian/gpg | sudo apt-key add - 提示 bash: sudo: command not …...

springboot的缓存和redis缓存,入门级别教程
一、springboot(如果没有配置)默认使用的是jvm缓存 1、Spring框架支持向应用程序透明地添加缓存。抽象的核心是将缓存应用于方法,从而根据缓存中可用的信息减少执行次数。缓存逻辑是透明地应用的,对调用者没有任何干扰。只要使用…...

语雀P0级时间爆发,留给运维的时间不多了?
事件背景 打工人的焦虑,已经延伸到在线文档了。近日,语雀P0级故障想必大家都有所体会,宕机近8小时,笔记、离线同步完全不可用。作为用户尤其担心我的文档资料是否会因此消失。 这泼天的8小时,放眼互联网界也是相当炸裂…...

LeetCode 2401.最长优雅子数组 ----双指针+位运算
数据范围1e5 考虑nlog 或者n的解法,考虑双指针 因为这里要求的是一段连续的数组 想起我们的最长不重复连续子序列 然后结合一下位运算就好了 是一道双指针不错的题目 class Solution { public:int longestNiceSubarray(vector<int>& nums) {int n nums…...
NOIP2023模拟6联测27 无穷括号序列
题目大意 小 C C C有一个括号序列 A A A,其长度为 m m m,且序列元素只包含左右括号。他想生成一个无限长的括号序列 B B B,由于 B B B的长度为正无穷,所以其下标可以为任意整数(可以为负)。为了由 A A A生…...

java spring cloud 工程企业管理软件-综合型项目管理软件-工程系统源码
Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目显示…...

openEuler 22.03 x86架构下docker运行arm等架构的容器——筑梦之路
为什么要这样做? 随着国产化的普及,国家政策对信创产业的支持,尤其一些金融证券行业、政府单位等,逐渐开始走国产化信创的路线,越来越多接触到国产 CPU (arm 平台,比如华为的鲲鹏处理器…...
【Java】HashMap常见的面试题
HashMap常见面试题 1.HashMap key 是否可以是为 我们自定义对象?——可以 2.HashMap 存储数据 有序还是无序?——无序 3.HashMap key 是否可以存放 null值?如果可以的话 存放在 数组中那个位置?——可以;存放在 index0的位置 4.Ha…...

openpnp - src - 配置文件载入过程的初步分析
文章目录 openpnp - src - 配置文件载入过程的初步分析概述笔记自己编译用的git版本报错截图问题1 - 怎么在调试状态下, 定位到抛异常的第一现场?结合单步调试找到的现场, 来分析报错的原因openpnp配置文件读取的流程END openpnp - src - 配置文件载入过程的初步分析 概述 从…...

中国各城市土地利用类型(城市功能)数据集(shp)
中国各城市土地利用类型(城市功能)数据集 时间:2018年 全国范围的城市用地类型数据(居住/商业/交通用地等共计11类) 分类:居住用地、商业用地、工业用地、医疗设施用地、体育文化设施用地、交通场站用地、绿地等用地类型 含城市编码、一级分类5个、二级分类11个 数据按…...

Linux网络编程:数据链路层
目录 一. 数据链路层概述 二. 以太网 2.1 以太网的概念 2.2 以太网数据帧 2.3 对于MAC地址的认识 2.4 数据碰撞问题 三. MTU和MSS 3.1 什么是MTU 3.2 MTU对UDP的影响 3.3 MTU对TCP的影响(MSS的概念) 四. ARP协议 4.1 ARP协议的作用 4.2 ARP数…...
python 线程 超时时间
python 线程 超时时间_mob649e815f0f18的技术博客_51CTO博客...
LeetCode:274. H 指数、275. H 指数 II(C++)
目录 274. H 指数 题目描述: 实现代码与解析: 排序暴力 275. H 指数 II 题目描述: 实现代码与解析: 二分 比较简单,不再写解析,注意二分的时候,r指针为n,含义为个数…...
多线程及锁
1.lock锁和synchronized锁的区别。 1:Synchronized 是Java的一个关键字,而Lock是java.util.concurrent.Locks 包下的一个接口; 2:Synchronized 使用过后,会自动释放锁,而Lock需要手动上锁、手动释放锁&am…...

C++ 写一个Data类的注意问题
Data类 声明和定义分离的一些问题 声明里面我们不带缺省参数,定义我们给缺省参数,如下面两段代码: Data.h#pragma once #include<iostream> using namespace std; class Data { public:Data(int year,int month,int day);private:in…...

postman做接口测试
之前搞自动化接口测试,由于接口的特性,要验证接口返回xml中的数据,所以没找到合适的轮子,就自己用requests造了个轮子,用着也还行,不过就是case管理有些麻烦,近几天又回头看了看postman也可以玩…...
hdlbits系列verilog解答(always块)-29
文章目录 一、问题描述二、verilog源码三、仿真结果一、问题描述 由于数字电路由用网线连接的逻辑门组成,因此任何电路都可以表示为模块和赋值语句的某种组合。然而,有时这不是描述电路的最方便方式。过程procedure(其中 always 的块就是一个示例)提供了描述电路的替代语法…...

uniapp实现瀑布流
首先我们要先了解什么是瀑布流: 瀑布流(Waterfall Flow)是一种常见的网页布局方式,也被称为瀑布式布局或砌砖式布局。它通常用于展示图片、博客文章、商品等多个不同大小和高度的元素。 瀑布流布局的特点是每个元素按照从上到下…...

15. 机器学习 - 支持向量机
Hi, 你好。我是茶桁。 逻辑回归预测心脏病 在本节课开始呢,我给大家一份逻辑回归的练习,利用下面这个数据集做了一次逻辑回归预测心脏病的练习。 本次练习的代码在「茶桁的AI秘籍」在Github上的代码库内,数据集的获取在文末。这样做是因为我…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...