当前位置: 首页 > news >正文

509. 斐波那契数

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30
class Solution {
public:int fib(int n) {//定义dp数组的意思//状态//初始化//遍历顺序//dp数组值是否符合if(n < 2) return n;// 表示第一个斐波那契数为dp[i];vector<int>dp(n+1); // 因为下面直接访问dp[0]和dp[1],所以得先加内存。dp[0] = 0;dp[1] = 1;for(int i = 2;i <= n;i++){dp[i] = dp[i-1]+dp[i-2];}return dp[n];}
};

相关文章:

509. 斐波那契数

斐波那契数 &#xff08;通常用 F(n) 表示&#xff09;形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始&#xff0c;后面的每一项数字都是前面两项数字的和。也就是&#xff1a; F(0) 0&#xff0c;F(1) 1 F(n) F(n - 1) F(n - 2)&#xff0c;其中 n > 1给定 n &a…...

四、[mysql]索引优化-1

目录 前言一、场景举例1.联合索引第一个字段用范围查询不走索引(分情况&#xff09;2.强制走指定索引3.覆盖索引优化4.in和or在表数据量比较大的情况会走索引&#xff0c;在表记录不多的情况下会选择全表扫描5.like 后% 一般情况都会走索引(索引下推) 二、Mysql如何选择合适的索…...

PyTorch入门学习(九):神经网络-最大池化使用

目录 一、数据准备 二、创建神经网络模型 三、可视化最大池化效果 一、数据准备 首先&#xff0c;需要准备一个数据集来演示最大池化层的应用。在本例中&#xff0c;使用了CIFAR-10数据集&#xff0c;这是一个包含10个不同类别图像的数据集&#xff0c;用于分类任务。我们使…...

0基础学习PyFlink——用户自定义函数之UDF

大纲 标量函数入参并非表中一行&#xff08;Row&#xff09;入参是表中一行&#xff08;Row&#xff09;alias PyFlink中关于用户定义方法有&#xff1a; UDF&#xff1a;用户自定义函数。UDTF&#xff1a;用户自定义表值函数。UDAF&#xff1a;用户自定义聚合函数。UDTAF&…...

英语小作文模板(06求助+描述;07描述+建议)

06 求助描述&#xff1a; 题目背景及要求 第一段 第二段 第三段 翻译成中文 07 描述&#xff0b;建议&#xff1a; 题目背景及要求 第一段 第二段...

为什么感觉假期有时候比上班还累?

假期比上班还累的感觉可能由以下几个原因造成&#xff1a; 计划过度&#xff1a;在假期里&#xff0c;人们往往会制定各种计划&#xff0c;如旅游、聚会、休息等&#xff0c;以充分利用这段时间。然而&#xff0c;如果这些计划过于紧张或安排得过于紧密&#xff0c;就会导致身…...

推理还是背诵?通过反事实任务探索语言模型的能力和局限性

推理还是背诵&#xff1f;通过反事实任务探索语言模型的能力和局限性 摘要1 引言2 反事实任务2.1 反事实理解检测 3 任务3.1 算术3.2 编程3.3 基本的句法推理3.4 带有一阶逻辑的自然语言推理3.5 空间推理3.6 绘图3.7 音乐3.8 国际象棋 4 结果5 分析5.1 反事实条件的“普遍性”5…...

《利息理论》指导 TCP 拥塞控制

欧文费雪《利息原理》第 10 章&#xff0c;第 11 章对利息的几何说明是普适的&#xff0c;任何一个负反馈系统都能引申出新结论。给出原书图示&#xff0c;本文依据于此&#xff0c;详情参考原书&#xff1a; 将 burst 看作借贷是合理的&#xff0c;它包含成本(报文)&#xf…...

Bsdiff,Bspatch 的差分增量升级(基于Win和Linux)

目录 背景 内容 准备工作 在windows平台上 在linux平台上 正式工作 生成差分文件思路 作用差分文件思路 在保持相同目录结构进行差分增量升级 服务端(生成差分文件) 客户端(作用差分文件) 背景 像常见的Android 的linux平台&#xff0c;游戏&#xff0c;系统更新都…...

【3妹教我学历史-秦朝史】2 秦穆公-韩原之战

插&#xff1a; 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 坚持不懈&#xff0c;越努力越幸运&#xff0c;大家一起学习鸭~~~ 3妹&#xff1a;2哥&#xff0c;今天下班这么早&#…...

车载控制器

文章目录 车载控制器电动汽车上都有什么ECU 车载控制器 智能汽车上的控制器数量因车型和制造商而异。一般来说&#xff0c;现代汽车可能有50到100个电子控制单元&#xff08;ECU&#xff09;或控制器。这些控制器负责管理各种系统&#xff0c;如发动机管理、刹车、转向、空调、…...

回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测

回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测 目录 回归预测 | Matlab实现RIME-CNN-SVM霜冰优化算法优化卷积神经网络-支持向量机的多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.RIME-CNN-SVM霜冰优化算…...

使用Jaeger进行分布式跟踪:学习如何在服务网格中使用Jaeger来监控和分析请求的跟踪信息

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

添加多个单元对象

开发环境&#xff1a; Windows 11 家庭中文版Microsoft Visual Studio Community 2019VTK-9.3.0.rc0vtk-example参考代码 demo解决问题&#xff1a;不同阶段添加多个单元对象。 定义一个点集和一个单元集合&#xff0c;单元的类型可以是点、三角形、矩形、多边形等基本图形。只…...

十八、模型构建器(ModelBuilder)快速提取城市建成区——批量掩膜提取夜光数据、夜光数据转面、面数据融合、要素转Excel(基于参考比较法)

一、前言 前文实现批量投影栅格、转为整型,接下来重点实现批量提取夜光数据,夜光数据转面、夜光数据面数据融合、要素转Excel。将相关结果转为Excel,接下来就是在Excel中进行阈值的确定,阈值确定无法通过批量操作,除非采用其他方式,但是那样的学习成本较高,对于参考比较…...

HarmonyOS开发:基于http开源一个网络请求库

前言 网络封装的目的&#xff0c;在于简洁&#xff0c;使用起来更加的方便&#xff0c;也易于我们进行相关动作的设置&#xff0c;如果&#xff0c;我们不封装&#xff0c;那么每次请求&#xff0c;就会重复大量的代码逻辑&#xff0c;如下代码&#xff0c;是官方给出的案例&am…...

【杂记】Ubuntu20.04装系统,安装CUDA等

装20.04系统 安装系统的过程中&#xff0c;ROG的B660G主板&#xff0c;即使不关掉Secure boot也是可以的&#xff0c;不会影响正常安装&#xff0c;我这边出现问题的主要原因是使用了Ventoy制作的系统安装盘&#xff0c;导致每次一选择使用U盘的UEFI启动&#xff0c;就会跳回到…...

040-第三代软件开发-全新波形抓取算法

第三代软件开发-全新波形抓取算法 文章目录 第三代软件开发-全新波形抓取算法项目介绍全新波形抓取算法代码小解 关键字&#xff1a; Qt、 Qml、 抓波、 截获、 波形 项目介绍 欢迎来到我们的 QML & C 项目&#xff01;这个项目结合了 QML&#xff08;Qt Meta-Object …...

分享一个基于asp.net的供销社农产品商品销售系统的设计与实现(源码调试 lw开题报告ppt)

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、Python、PHP、.NET、微信小程序、爬虫、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&…...

Java基于SpringBoot的线上考试系统

1 摘 要 基于 SpringBoot 的在线考试系统网站&#xff0c;功能模块具有课程管理、成绩管理、教师管理、学生管理、考试管理以及基本信息的管理等&#xff0c;通过将系统分为管理员、授课教师以及学生&#xff0c;从不同的身份角度来对用户提供便利&#xff0c;将科技与教学模式…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...

ThreadLocal 源码

ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物&#xff0c;因为每个访问一个线程局部变量的线程&#xff08;通过其 get 或 set 方法&#xff09;都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段&#xff0c;这些类希望将…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

目录 &#x1f50d; 若用递归计算每一项&#xff0c;会发生什么&#xff1f; Horners Rule&#xff08;霍纳法则&#xff09; 第一步&#xff1a;我们从最原始的泰勒公式出发 第二步&#xff1a;从形式上重新观察展开式 &#x1f31f; 第三步&#xff1a;引出霍纳法则&…...

在Spring Boot中集成RabbitMQ的完整指南

前言 在现代微服务架构中&#xff0c;消息队列&#xff08;Message Queue&#xff09;是实现异步通信、解耦系统组件的重要工具。RabbitMQ 是一个流行的消息中间件&#xff0c;支持多种消息协议&#xff0c;具有高可靠性和可扩展性。 本博客将详细介绍如何在 Spring Boot 项目…...