多机多卡分布式训练
1. 环境搭建
- 分布式训练框架:accelerate+deepspeed+pdsh(可有可无)
- 基础环境:cuda、显卡驱动、pytorch
1.1 安装相关包
- cuda安装:参考官网安装步骤
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-repo-rhel7-11-8-local-11.8.0_520.61.05-1.x86_64.rpm
sudo rpm -i cuda-repo-rhel7-11-8-local-11.8.0_520.61.05-1.x86_64.rpm
sudo yum clean all
sudo yum -y install nvidia-driver-latest-dkms
sudo yum -y install cuda
- 显卡驱动安装:下载官网驱动包并安装
- pytorch安装:参考官网安装指令
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
- accelerate安装:参考huggingface官网
pip install accelerate
- deepspeed安装:参考deepspeed github
- pdsh安装:官网说明
可以参考教程:并行分布式运维工具pdsh-阿里云开发者社区
tar jxvf pdsh-2.29.tar.bz2
cd pdsh-2.29
./configure --with-ssh --with-rsh --with-mrsh --with-dshgroups --with-machines=/etc/pdsh/machines
make
make install
pdsh -V
注意:所有机器均需要安装一模一样的环境:版本需要一致;conda安装路径一致;同时cuda和pytorch版本相对应,如下图所示。
2. 启动分布式训练
2.1 使用accelerate
# 1、生成accelerate配置文件,使用命令行生成
accelerate config
2.1 启动分布式训练脚本
方式一:使用pdsh,仅需要在主节点启动
# accelerate语法
accelerate launch --config_file <accelerate配置文件> python_script.py <python脚本环境变量参数># 示例如下
config_path=/data0/sdmt/mxm/kohya_ss/my_util/config/deepspeed_pdsh_config.yamlaccelerate launch --config_file $config_path \
train_text_to_image_sdxl.py --mixed_precision fp16 --enable_xformers_memory_efficient_attention --gradient_checkpointing --noise_offset 0.05 --cache_dir "/data0/sdmt/mxm/datasets/" --num_train_epochs 20 --resolution 1024 --proportion_empty_prompts 0.2 --learning_rate 1e-06 --lr_scheduler "constant" --lr_warmup_steps 0 --validation_prompt "a pair of casual leather shoes" --validation_epochs 5 --pretrained_model_name_or_path "stabilityai/stable-diffusion-xl-base-1.0" --pretrained_vae_model_name_or_path "madebyollin/sdxl-vae-fp16-fix" --train_data_dir "/data0/sdmt/train_img/000/10_train_1024_hug"
如下所示,启动2台服务器,服务器每台一张显卡。
相关文章:

多机多卡分布式训练
1. 环境搭建 分布式训练框架:acceleratedeepspeedpdsh(可有可无)基础环境:cuda、显卡驱动、pytorch 1.1 安装相关包 cuda安装:参考官网安装步骤 wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-…...

打字练习软件 Type Fu mac中文版技能介绍
Type Fu mac是一款打字练习和提高打字速度的应用程序。它旨在帮助用户通过练习键盘打字,提高打字准确性和速度。无论您是初学者还是想要提高打字技能的专业人士,Type Fu都是一个很好的选择! Type Fu mac采用了一种互动,游戏化的方…...

我的云栖大会之旅:见证云计算创新的15年
云栖大会,曾经是一次不可思议的科技之旅,却如今已见证了我对云计算世界的15年关注和发展。第一次踏上云栖大会之旅,我记得是在2009年。那时的云计算还是一个新生事物,而云栖大会正是其中的奠基石。 我清楚地记得那个炎热的夏天&am…...

一个小技巧,显著提升大模型推理能力!加州大学提出MAF多反馈框架
作者 | 谢年年 最近,多篇文章《GPT-4的推理能力非常有限,有两篇论文为证》、《DeepMind:无法自我纠正推理,除非提前得知正确答案》指出大模型在推理任务中似乎没有自我改进的能力。即在无任何外部反馈的情况下无法通过自我纠正的形…...

测开 (Junit 单元测试框架)
目录 了解 Junit 引入相关依赖 1、Junit注解 Test BeforeEach、BeforeAll AfterEach && AfterAll 2、断言 1、Assertions - assertEquals 方法 2、Assertions - assertNotEquals 方法 3、Assertions - assertTrue && assertFalse方法 4、Assertions…...
ncurse编程指南
文章目录 0. 介绍1. Hello, Ncurse2. 初始化函数2.1 raw() 和 cbreak()2.2 echo()和noecho()2.3 keypad()2.4 halfdelay()2.5 初始化样例 3. 命名规范4. 输出函数4.1 addch()类函数4.2 printw()类函数4.3 addstr()类函数4.4 注意4.5 输出函数例子 5. 输入函数5.1 getch()5.2 sc…...
Graph U-Net Code【图分类】
1. main.py # GNet是需要用到的model net GNet(G_data.feat_dim, G_data.num_class, args) # graph, 特征维度,类别数,参数 trainer Trainer(args, net, G_data) #开始训练数据 # 正式开始训练数据 trainer.train()2. network.py class GNet(nn.Modul…...
PTA 秀恩爱分得快(树)
题目 古人云:秀恩爱,分得快。 互联网上每天都有大量人发布大量照片,我们通过分析这些照片,可以分析人与人之间的亲密度。如果一张照片上出现了 K 个人,这些人两两间的亲密度就被定义为 1/K。任意两个人如果同时出现在…...

文心一言4.0对比ChatGPT4.0有什么优势?
目录 总结 文心一言4.0的优势 文心一言4.0的劣势 免费分享使用工具 后话 生成式AI的困境 “不会问”“不会用”“不敢信” 为什么要出收费版本? 目前使用过国内的文心一言3.5和WPS AI,国外的ChatGPT4.0。 文心一言和其他国内产品相比࿰…...

美观且可以很方便自定义的MATLAB绘图颜色
函数介绍 主函数是draw_test,用于测试函数。 draw_h是函数,用于给Matlab提供美观且可以很方便自定义的绘图颜色。 draw_h函数介绍 这是一个带输入输出的函数,输入1/2/3,输出下面三种颜色库的配色,每种库均有五种颜色…...

基于jsp,ssm物流快递管理系统
开发工具:eclipse,jdk1.8 服务器:tomcat7.0 数据库:mysql5.7 技术: springspringMVCmybaitsEasyUI 项目包括用户前台和管理后台两部分,功能介绍如下: 一、用户(前台)功能: 用…...

陪诊系统|挂号陪护搭建二开陪诊师入驻就医小程序
我们的陪诊小程序拥有丰富多样的功能,旨在最大程度满足现代人的需求。首先,我们采用了智能排队系统,通过扫描二维码获取排号信息,让您从繁琐的排队过程中解放出来。其次,我们提供了多种支付方式,不仅可以实…...

恒驰服务 | 华为云数据使能专家服务offering之大数据建设
恒驰大数据服务主要针对客户在进行智能数据迁移的过程中,存在业务停机、数据丢失、迁移周期紧张、运维成本高等问题,通过为客户提供迁移调研、方案设计、迁移实施、迁移验收等服务内容,支撑客户实现快速稳定上云,有效降低时间成本…...

轻量级狂雨小说cms系统源码 v1.5.2 基于ThinkPHP5.1+MySQL
轻量级狂雨小说cms系统源码 v1.5.2 基于ThinkPHP5.1MySQL的技术开发 狂雨小说cms提供一个轻量级小说网站解决方案,基于ThinkPHP5.1MySQL的技术开发。 KYXSCMS,灵活,方便,人性化设计简单易用是最大的特色,是快速架设小说类网站首选…...

Leetcode刷题详解——Pow(x, n)
1. 题目链接:50. Pow(x, n) 2. 题目描述: 实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。 示例 1: 输入:x 2.00000, n 10 输出:1024.00000示例 2:…...

计算机毕业设计选题推荐-校园失物招领微信小程序/安卓APP-项目实战
✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...

人工智能基础_机器学习011_梯度下降概念_梯度下降步骤_函数与导函数求解最优解---人工智能工作笔记0051
然后我们来看一下梯度下降,这里先看一个叫 无约束最优化问题,,值得是从一个问题的所有可能的备选方案中选最优的方案, 我们的知道,我们的正态分布这里,正规的一个正态分布,还有我们的正规方程,他的这个x,是正规的,比如上面画的这个曲线,他的这个x,就是大于0的对吧,而现实生活…...

开放式耳机能保护听力吗,开放式耳机跟骨传导耳机哪个更好?
如果从严格意义上来讲的话,开放式耳机中的骨传导耳机是能保护听力,现如今的开放式耳机是一个统称,将所有不入耳的类目全部规划到一块。因此在开放式耳机中存在着一些耳机是只能够保持周边环境音,而不是保护听力的。 下面让我来给…...

【Qt之QLocale】使用
描述 QLocale类可以在多种语言之间进行数字和字符串的转换。 QLocale类在构造函数中使用语言/国家对进行初始化,并提供类似于QString中的数字转字符串和字符串转数字的转换函数。 示例: QLocale egyptian(QLocale::Arabic, QLocale::Egypt);QString s1 …...

维修服务预约小程序的效果如何
生活服务中维修项目绝对是需求量很高的,如常见的保洁、管道疏通、数码维修、安装、便民服务等,可以说每天都有生意,而对相关维修店企业来说,如何获得更多生意很重要。 接下来让我们看看通过【雨科】平台制作维修服务预约小程序能…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...

算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...

Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...