Pytorch常用函数
Pytorch
- 1 一些操作含义
- 2 常用函数
- torch.squeeze
- torch.unsqueeze
- torch.transpose
- 随机数生成
- Tensor详细内容
1 一些操作含义
- 下划线后缀含义:
在touch中函数后面加下划线代表是原位(In-place)操作,也就是内存的位置不变化,比如torch.add(value)和torch.add_(value)
备注:In-place运算是一种直接改变给定线性函数、向量、矩阵(张量)内容而不复制的运算,因此在操作高维数据时,它能够减少内存使用 - like后缀含义:
在touch中函数后缀有like代表生成的形状维度与输入矩阵的形状维度一致
2 常用函数
torch.squeeze
- torch.squeeze(input, dim=None, out=None)
将输入张量形状中的1 去除并返回。 如果输入是形如(A×1×B×1×C×1×D)
,那么输出形状就为: (A×B×C×D)
当给定dim时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B)
, squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)
。 - 如果dim为负,则将会被转化dim+input.dim()+1,(可以记为从后往前数维度)。dim的维度范围([-input.dim() - 1, input.dim() + 1)
- 参数:
tensor (Tensor) – 输入张量
dim (int) – 插入维度的索引
out (Tensor, optional) – 结果张量
具体代码示例
‘’’
import torch
x = torch.zeros(2,1,2,1,2)
x.size()
torch.Size([2, 1, 2, 1, 2])
y=torch.squeeze(x)
y.shape
torch.Size([2, 2, 2])
y=torch.squeeze(x,0)
y.shape
torch.Size([2, 1, 2, 1, 2])
y=torch.squeeze(x,1)
y.size()
torch.Size([2, 2, 1, 2])
y=torch.squeeze(x,-4)
y.shape
torch.Size([2, 2, 1, 2])
‘’’
torch.unsqueeze
torch.unsqueeze(input, dim, out=None),squeeze的逆操作,返回一个新的张量,对输入的指定位置插入维度 1。
具体代码示例
‘’’
x = torch.tensor([1, 2, 3, 4])
x
tensor([1, 2, 3, 4])
torch.unsqueeze(x, 0)
tensor([[1, 2, 3, 4]])
torch.unsqueeze(x, 1)
tensor([[1],
[2],
[3],
[4]])
‘’’
torch.transpose
torch.transpose(input, dim0, dim1, out=None) → Tensor,返回输入矩阵input的转置。交换维度dim0和dim1。
如果输入是一个跨步张量,则结果张量与输入张量共享其底层存储,因此更改其中一个的内容将更改另一个的内容。
如果输入是一个稀疏张量,则结果张量不与输入张量共享底层存储。
参数:
input (Tensor) – 输入张量
dim0 (int) – 转置的第一维
dim1 (int) – 转置的第二维
‘’’
x=torch.randn(2,3,4)
x
tensor([[[-2.2487, -0.5821, 1.1262, 0.7496],
[ 0.8734, 1.6248, -0.5010, 0.7022],
[ 0.4190, 1.6377, -0.1449, 1.1198]],
[[ 0.2262, -0.8953, -2.3222, 1.6512],[ 0.7219, -0.1876, 0.6869, -0.3515],[-1.2393, 0.7014, -0.3381, -0.7055]]])
torch.transpose(x,0,1)
tensor([[[-2.2487, -0.5821, 1.1262, 0.7496],
[ 0.2262, -0.8953, -2.3222, 1.6512]],
[[ 0.8734, 1.6248, -0.5010, 0.7022],[ 0.7219, -0.1876, 0.6869, -0.3515]],[[ 0.4190, 1.6377, -0.1449, 1.1198],[-1.2393, 0.7014, -0.3381, -0.7055]]])
‘’’
随机数生成
函数 | 生成类型 |
---|---|
normal | 离散正态分布中随机抽取浮点数 |
rand | 从区间[0,1)的均匀分布中抽取的随机抽取一组浮点数 |
randn | 从标准正态分布(均值为0,方差为 1)中随机抽取一组浮点数 |
randint | 半开区间[start, end),从start开始到end之间均匀生成的随机整数 |
randperm | 给定参数n,返回一个从0 到n -1 的随机整数 |
range | 区间[start, end],从start开始到end,以step为步长的一组值(不建议使用) |
arange | 半开区间[start, end),从start开始到end,以step为步长的一组值,当start和end都为整数,输出整数值,有一个为浮点数,则输出浮点数 |
Tensor详细内容
查看Tensor的相关概念及操作
相关文章:
Pytorch常用函数
Pytorch 1 一些操作含义2 常用函数torch.squeezetorch.unsqueezetorch.transpose随机数生成Tensor详细内容 1 一些操作含义 下划线后缀含义: 在touch中函数后面加下划线代表是原位(In-place)操作,也就是内存的位置不变化,比如torch.add(valu…...

如何利用python连接讯飞的星火大语言模型
星火大模型是科大讯飞推出的一款人工智能语言模型,它采用了华为的昇腾910 AI处理器。这款处理器是一款人工智能处理器,具有强大的计算能力和高效的能耗控制能力。 华为昇腾910 AI处理器采用了创新的Da Vinci架构,这种架构在设计上充分考虑了…...

【Kubernetes 基本概念】Kubernetes 的架构和核心概念
目录 一、Kurbernetes1.1 简介1.2 为什么要用K8s?1.3 K8s的特性 二、Kurbernetes集群架构与组件三、Kurbernetes的核心组件3.1 Master组件3.1.1 Kube-apiserver3.1.2 Kube-controller-manager3.1.3 Kube-scheduler 3.2 配置存储中心——etcd3.3 Node组件3.3.1 Kubelet3.3.2 Ku…...
Docker安装部署Elasticsearch+Kibana+IK分词器
Docker安装部署ElasticsearchKibanaIK分词器 Docker安装部署elasticsearch拉取镜像创建数据卷创建网络elasticsearch容器,启动! Docker安装部署Kibana拉取镜像Kibana容器,启动! 安装IK分词器安装方式一:直接从github上…...

PCL setCameraPosition 参数讲解
setCameraPosition 的原型如下void setCameraPosition (double pos_x, double pos_y, double pos_z,double view_x, double view_y, double view_z,double up_x, double up_y, double up_z, int viewport 0);pos_x pos_y pos_z为相机所在的位置view_x view_y view_z 是焦点所…...

有关YOLOV5在测试时,图片大小被调整的问题
执行detect.py文件,在运行栏中出现以下: detect: weightsyolov5s.pt, sourcedata\images, datadata\coco128.yaml, imgsz[640, 640], conf_thres0.25, iou_thres0.45, max_det1000, device, view_imgFalse, save_txtFalse, save_confFalse, save_cropFa…...

【机器学习】四、计算学习理论
1 基础知识 计算学习理论(computational learning theory):关于通过“计算”来进行“学习”的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法体统理论保证,并根据结…...

spring解决后端显示时区的问题
spring解决后端显示时区的问题 出现的问题: 数据库中的数据: 解决方法 spring:jackson:date-format: yyyy-MM-dd HH:mm:sstime-zone: Asia/Shanghai...

大模型冷思考:企业“可控”价值创造空间还有多少?
文 | 智能相对论 作者 | 叶远风 毫无疑问,大模型热潮正一浪高过一浪。 在发展进程上,从最开始的技术比拼到现在已开始全面强调商业价值变现,百度、科大讯飞等厂商都喊出类似“不能落地的大模型没有意义”等口号。 在模型类型上࿰…...

ctfshow-web入门37-52
include($c);表达式包含并运行指定文件。 使用data伪协议 ?cdata://text/plain;base64,PD9waHAgc3lzdGVtKCdjYXQgZmxhZy5waHAnKTs/Pg PD9waHAgc3lzdGVtKCdjYXQgZmxhZy5waHAnKTs/Pg 是<?php system(cat flag.php);?> base64加密 源代码查看得到flag 38 多禁用了ph…...
前端项目部署后,需要刷新页面才能看到更新内容
问题背景 前端项目部署更新后,通知业务验证,业务点击收藏的标签,打开网页后没有看到修改的内容,每次都需要手动刷新,用户体验非常不好。 问题原因:缓存未过期,浏览器直接读取本地缓存…...

android 13 write javaBean error at *** 错误
报错代码:红框处。 注意:android10 不会报错,运行正常。android13就报错 错误原因:对象中VerifyDownloadEntity,有个Bitmap成员变量 public class VerifyDownloadEntity {private Bitmap bitmap;private String cooki…...
Only fullscreen opaque activities can request orientation
出现Only fullscreen opaque activities can request orientation是谷歌爸爸在安卓8.0版本时为了支持全面屏,增加了一个限制:如果是透明的Activity,则不能固定它的方向,因为它的方向其实是依赖其父Activity的(因为透明…...

前端实验(一)单页面应用的创建
实验目的 掌握使用vite创建vue3单页面程序命令熟悉所创建程序的组织结构熟悉单页面程序运行原理能够编写简单的单页面程序 实验内容 创建一个名为vue-demo的单页面程序编写简单的单页面程序页面运行单页面程序 实验步骤 使用vite创建单页面程序 创建项目名为目录vue-demo的…...

数字人小灿:始于火山语音,发于 B 端百业
火爆的数字人市场又有新消息来袭:火山语音的数字人小灿来了! 数字人小灿首曝视频 今年以来,在生成式AI浪潮的助推下,大量企业争相布局数字人赛道。市场之所以如此火热,是因为AI数字人已被视为人工智能时代智能交互的入…...

蓝桥杯刷题
欢迎来到Cefler的博客😁 🕌博客主页:那个传说中的man的主页 🏠个人专栏:题目解析 🌎推荐文章:题目大解析(3) 👉🏻最大降雨量 原题链接࿱…...

Go Metrics SDK Tag 校验性能优化实践
背景 Metrics SDK 是与字节内场时序数据库 ByteTSD 配套的用户指标打点 SDK,在字节内数十万服务中集成,应用广泛,因此 SDK 的性能优化是个重要和持续性的话题。本文主要以 Go Metrics SDK 为例,讲述对打点 API 的 hot-path 优化的…...

二叉树问题——前/中/后/层遍历问题(递归与栈)
摘要 博文主要介绍二叉树的前/中/后/层遍历(递归与栈)方法 一、前/中/后/层遍历问题 144. 二叉树的前序遍历 145. 二叉树的后序遍历 94. 二叉树的中序遍历 102. 二叉树的层序遍历 103. 二叉树的锯齿形层序遍历 二、二叉树遍历递归解析 // 前序遍历递归LC144_二叉树的前…...

Vue3问题:如何实现级联菜单的数据懒加载?
前端功能问题系列文章,点击上方合集↑ 序言 大家好,我是大澈! 本文约3100字,整篇阅读大约需要5分钟。 本文主要内容分三部分,第一部分是需求分析,第二部分是实现步骤,第三部分是问题详解。 …...

STM32-电源管理(实现低功耗)
电源管理 STM32 HAL库对电源管理提供了完善的函数和命令。 工作模式(高功耗->低功耗):运行、睡眠、停止、待机。 若备份域电源正常供电,备份域内的RTC都可以正常运行,备份域内的寄存器的数据会被保存,不…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...