当前位置: 首页 > news >正文

ardupilot开发 --- SLAM 篇

1. 视觉SLAM

1.1 深度相机的种类

  • 结构光相机,如 Kinect1.0、RealSense
  • TOF相机,如 Kinect2.0
  • 双目相机,如 ZED
  • 详细参考:https://zhuanlan.zhihu.com/p/282776636

1.2 视觉SLAM算法

2D slam 与3D slam

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
应用场景有哪些不同?

相关文章:

ardupilot开发 --- SLAM 篇

1. 视觉SLAM 1.1 深度相机的种类 结构光相机,如 Kinect1.0、RealSenseTOF相机,如 Kinect2.0双目相机,如 ZED详细参考:https://zhuanlan.zhihu.com/p/282776636 1.2 视觉SLAM算法 2D slam 与3D slam 应用场景有哪些不同&#x…...

Elasticsearch:在你的数据上训练大型语言模型 (LLM)

过去的一两年,大型语言模型(LLM)席卷了互联网。 最近 Google 推出的 PaLM 2 和 OpenAI 推出的 GPT 4激发了企业的想象力。 跨领域构思了许多潜在的用例。 多语言客户支持、代码生成、内容创建和高级聊天机器人都是一些例子。 这些用例要求 LL…...

拓展卡尔曼滤波EKF

How to fusion two Gauss Distribution N ( x , μ 0 , σ 0 ) N ( x , μ 1 , σ 1 ) N ( x , μ ′ , σ ′ ) \begin{equation} \begin{aligned} \mathcal{N}(x,\mu_0,\sigma_0) \mathcal{N}(x,\mu_1,\sigma_1) \mathcal{N}(x,\mu,\sigma) \\ \end{aligned} \end{equatio…...

第四章 应用SysML基本特性集的汽车示例 P2(断更)|系统建模语言SysML实用指南学习

仅供个人学习 使用试用版CSM很鸡肋,然后书中一些内容没有说明,自定义方面有点困难,第四章暂时停止 同时感觉画图的顺序也很随意?甚至需求图放在了后面,觉得很离谱。 准备跳过这一章节 汽车模型 续P1 序列图表示启…...

Vue入门——核心知识点

简介 Vue是一套用于构建用户界面的渐进式JS框架。 构建用户界面:就是将后端返回来的数据以不同的形式(例如:列表、按钮等)显示在界面上。渐进式:就是可以按需加载各种库。简单的应用只需要一个核心库即可,复杂的应用可以按照需求…...

使用opencv的tracking模块跟踪目标

OpenCV跟踪模块算法介绍 OpenCV的tracking模块是一个功能强大的跟踪算法库,包含多种用于跟踪对象的算法。它可以帮助你在连续的视频帧中定位一个物体,例如人脸、眼睛、车辆等。 在OpenCV的tracking模块中,一些主要的跟踪算法包括&#xff1…...

Debian或Ubuntu静态交叉编译arm和aarch64

Debian或Ubuntu静态交叉编译arm和aarch64 介绍术语ARM架构前置条件从源代码编译一个简单的C程序configure和make交叉编译关于静态链接和依赖关系使用 musl libc 实现与 configure 和 make 进行交叉编译 ARM 正在获得越来越多的关注,并且越来越受欢迎。直接在这些基于…...

最新ai系统ChatGPT程序源码+详细搭建教程+以图生图+Dall-E2绘画+支持GPT4+Midjourney绘画

一、AI创作系统 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如…...

【设计模式】第16节:行为型模式之“命令模式”

一、简介 命令模式:将请求(命令)封装为一个对象,这样可以使用不同的请求参数化其他对象(将不同请求依赖注入到其他对象),并且能够支持请求(命令)的排队执行、记录日志、…...

安装pytorch报错torch.cuda.is_available()=false的解决方法

参考文章: https://blog.csdn.net/qq_46126258/article/details/112708781 https://blog.csdn.net/Andy_Luke/article/details/122503884 https://blog.csdn.net/anmin8888/article/details/127910084 https://blog.csdn.net/zcs2632008/article/details/127025294 …...

自定义表格的表头根据后端的数据进行筛选是否进行自定义表头添加按钮

自定义表格的表头根据后端的数据进行筛选是否进行自定义表头添加按钮 自定义表格的表头根据后端的数据进行筛选是否进行自定义表头添加按钮 <template><div class"box"><el-table :data"msgMapList" border class"table">&l…...

海上风电应急救援vr模拟安全培训提高企业风险防范能力

相比传统的发电厂&#xff0c;海上风电作业积累的经验少&#xff0c;风险高&#xff0c;因此为了规范施工人员的行为和操作&#xff0c;保障生产安全进行&#xff0c;开展海上风电VR安全培训具有重要意义。 有助于提高员工的安全意识 通过模拟真实的海上风电作业环境&#xff0…...

自定义SpringBoot启动图标

在SpringBoot项目的resources目录下创建banner.txt文件 在https://www.bootschool.net/网站上复制Ascll艺术字&#xff08;图&#xff09;粘贴到banner.txt中保存。 启动项目就会加载 可以修改颜色&#xff0c;和版本号 ${application.version} 输出版本 ${spring-boot.v…...

diffusers-Tasks

https://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generationhttps://huggingface.co/docs/diffusers/using-diffusers/unconditional_image_generation1.Unconditional image generation 无条件图像生成是一个相对简单的任务。模型仅生成图像&…...

文件下载漏洞, 漏洞原理, 测试方法, 漏洞防御, 常见敏感路径

文件下载漏洞 一, 文件下载漏洞原理 利用条件: 1. 读取文件的路径是用户可控, 且没有校验或检验不严. 2. 使用了读取文件的函数. 3. 输出了文件内容.漏洞场景一: 后端没有限制哪些路径的文件可以下载 后端代码: http://192.168.112.200/security/download.php $file_pat…...

【零参考GAN:Pansharpening】

ZeRGAN: Zero-Reference GAN for Fusion of Multispectral and Panchromatic Images &#xff08;用于多光谱和全色图像融合的零参考GAN&#xff09; 本文提出了一种融合低空间分辨率多光谱(LR MS)和高空间分辨率全色(PAN)图像的新的全色锐化方法–零参考生成对抗网络(ZeRGAN…...

Nacos 注册中心介绍与实操

前言 本文为个人SpringCloud学习笔记&#xff0c;主要记录Nacos的注册中心实操、SpringBoot多模块编程实操等 注册中心 注册中心介绍 注册中心是微服务的一个重要组件&#xff0c;用于实现服务的注册与发现&#xff0c;主要作用包括以下&#xff1a; 服务注册&#xff1a;…...

基于51单片机的智能手机充电器设计

**单片机设计介绍&#xff0c;1660【毕设课设】基于51单片机和MAX1898的智能手机充电器设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 51单片机智能手机充电器设计介绍 51单片机智能手机充电器是一种可以实现智能快速充电的…...

nginx 和gateway配置实现动静分离和反向代理

这两个配置文件分别是Nginx和Spring Cloud Gateway的配置文件&#xff0c;它们用于构建网关服务&#xff0c;进行请求的路由和转发。 前端发送请求的时候为了不暴露服务器地址,所以会使用nginx做反向代理的一个主要作用是隐藏后端服务器的真实地址&#xff0c;从而增加网络安全…...

【深度学习实验】网络优化与正则化(二):基于自适应学习率的优化算法详解:Adagrad、Adadelta、RMSprop

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 导入必要的库1. 随机梯度下降SGD算法a. PyTorch中的SGD优化器b. 使用SGD优化器的前馈神经网络 2.随机梯度下降的改进方法a. 学习率调整b. 梯度估计修正 3. 梯度估计修正&#xff1a;动量法Momen…...

【LLM】多智能体系统 Why Do Multi-Agent LLM Systems Fail?

note 构建一个成功的 MAS&#xff0c;不仅仅是提升底层 LLM 的智能那么简单&#xff0c;它更像是在构建一个组织。如果组织结构、沟通协议、权责分配、质量控制流程设计不当&#xff0c;即使每个成员&#xff08;智能体&#xff09;都很“聪明”&#xff0c;整个系统也可能像一…...

P3 QT记事本(3.4)

3.4 文件选择对话框 QFileDialog 3.4.1 QFileDialog 开发流程 使用 QFileDialog 的基本步骤通常如下&#xff1a; 实例化 &#xff1a;首先&#xff0c;创建一个 QFileDialog 对象的实例。 QFileDialog qFileDialog;设置模式 &#xff1a;根据需要设置对话框的模式&…...

固定ip和非固定ip的区别是什么?如何固定ip地址

在互联网中&#xff0c;我们常会接触到固定IP和非固定IP的概念。它们究竟有何不同&#xff1f;如何固定IP地址&#xff1f;让我们一起来探究这个问题。 一、固定IP和非固定IP的区别是什么 固定IP&#xff08;静态IP&#xff09;和非固定IP&#xff08;动态IP&#xff09;是两种…...

Java方法引用深度解析:从匿名内部类到函数式编程的演进

文章目录 前言问题场景第一种&#xff1a;传统的匿名内部类技术解析优缺点分析 第二种&#xff1a;Lambda表达式的革命技术解析Lambda表达式的本质性能优势 第三种&#xff1a;方法引用的极致简洁技术解析 方法引用的四种类型1. 静态方法引用2. 实例方法引用3. 特定类型的任意对…...

第23讲、Odoo18 邮件系统整体架构

目录 Odoo 邮件系统整体架构邮件发送方式邮件模板配置SMTP 邮件服务器配置邮件发送过程开发中常见邮件发送需求常见问题排查提示与最佳实践完整示例&#xff1a;审批通过自动发邮件门户表单自动邮件通知案例邮件队列与异步发送邮件添加附件邮件日志与调试多语言邮件模板邮件安…...

如何评估大语言模型效果

评估大模型微调后的效果是一个系统化的过程&#xff0c;需要结合客观指标和主观评估&#xff0c;并根据任务类型&#xff08;分类、生成、回归等&#xff09;选择合适的评估方法。 一、评估前的准备工作 数据集划分&#xff1a; 将数据分为 训练集、验证集 和 测试集&#xff…...

NoSQL 之Redis哨兵

目录 一、Redis 哨兵模式概述 &#xff08;一&#xff09;背景与核心目标 &#xff08;二&#xff09;基本架构组成 &#xff08;三&#xff09;核心功能 二、哨兵模式实现原理 &#xff08;一&#xff09;配置关键参数 &#xff08;二&#xff09;哨兵节点的定时任务 …...

Python爬虫实战:研究urlunparse函数相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上的数据量呈现出指数级增长。如何从海量的网页数据中高效地获取有价值的信息,成为了学术界和工业界共同关注的问题。网络爬虫作为一种自动获取网页内容的技术,能够按照预定的规则遍历互联网上的网页,并提取出所需…...

OpenLayers 地图定位

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图定位功能很常见&#xff0c;在移动端和PC端都需要经常用到&#xff0c;像百度、高德、谷歌都提供了方便快捷的定位功能。OpenLayers中也提供了定位的…...

6.6本日总结

一、英语 复习默写list9list20 二、数学 学习线代第一讲&#xff0c;订正13讲1000题&#xff0c;写15讲课后题 三、408 学习计组2.2&#xff0c;写计组习题 四、总结 单词再背完一遍后背阅读词&#xff0c;未处理的习题堆积过多要及时处理 五、明日计划 英语&#xff…...