当前位置: 首页 > news >正文

软件测试/测试开发丨利用ChatGPT自动生成架构图

点此获取更多相关资料

简介

架构图通过图形化的表达方式,用于呈现系统、软件的结构、组件、关系和交互方式。一个明确的架构图可以更好地辅助业务分析、技术架构分析的工作。架构图的设计是一个有难度的任务,设计者必须要对业务、相关技术栈都非常清晰才能设计出来符合需求的架构图。

图片

实践演练

1.有明确的业务的需求:业务需求必须要清晰不能模棱两可。如果业务需求不够清晰,那么在写提示词的之前,需要提前梳理一下业务需求,将它转换成ChatGPT可以理解的形式。

2.确定输出的格式:ChatGPT无法直接生成图形文件,但是可以通过Plantuml等各种文字转图片的工具间接生成。

  • 提示词:现在我需要设计一个测试平台产品,这个产品需要包含测试用例的管理、用户管理、测试用例执行、执行记录管理,请根据以上信息帮我生成一张使用Plantuml绘制的类图。

以下是使用ChatGPT绘制出来的类图:

图片

由上图可以看出 ChatGPT 将我们提到了的几个业务对象通过类的方式表示出来,甚至还罗列了可能包含的方法,如此一来便可以间接通过ChatGPT 以及 Plantuml 工具生成对应的架构图。

总结

在这次实践中,我们使用了ChatGPT 提示词的以下技巧:

1.写清楚需求:明确产品的需求,让生成的架构图更贴近需求。

2.系统的测试变化:如果中间步骤输出的信息不满足需求,可以通过提示词进行纠正与补充。

3.将复杂的任务拆分为更简单的子任务:直接生成图片或文件 ChatGPT 无法完成,但是可以通过曲线救国的方式间接生成架构图代码,然后再转换为图片。

相关文章:

软件测试/测试开发丨利用ChatGPT自动生成架构图

点此获取更多相关资料 简介 架构图通过图形化的表达方式,用于呈现系统、软件的结构、组件、关系和交互方式。一个明确的架构图可以更好地辅助业务分析、技术架构分析的工作。架构图的设计是一个有难度的任务,设计者必须要对业务、相关技术栈都非常清晰…...

Java学习笔记(六)——面向对象编程(基础)

一、类与对象 (一)类与对象的概念 (二)对象内存布局 ​编辑 对象分配机制 ​编辑 (三)属性/成员变量 (四)创建对象与访问属性 二、成员方法 (一)方法…...

0基础学习PyFlink——个数滚动窗口(Tumbling Count Windows)

大纲 Tumbling Count WindowsmapreduceWindow Size为2Window Size为3Window Size为4Window Size为5Window Size为6 完整代码参考资料 之前的案例中,我们的Source都是确定内容的数据。而Flink是可以处理流式(Streaming)数据的,就是…...

车载终端构筑智慧工厂:无人配送车的高效物流体系

​随着科技的不断进步和应用,智能化已经成为许多领域的关键词。在物流行业中,随着无人配送车的兴起和智慧工厂的崛起,车载终端正引领着无人配送车的科技变革之路。 文章同款:https://www.key-iot.com/iotlist/sv900.html 车载终端…...

插件_日期_lunar-calendar公历农历转换

现在存在某需求&#xff0c;需要将公历、农历日期进行相互转换&#xff0c;在此借助lunar-calendar插件完成。 下载 [1] 通过npm安装 npm install lunar-calendar[2]通过文件方式引入 <script type"text/javascript" src"lib/LunarCalendar.min.js">…...

【FreeRTOS】【STM32】08 FreeRTOS 消息队列

简单来说 消息队列是一种数据结构 任务操作队列的基本描述 1.如果队列未满或者允许覆盖入队,FreeRTOS会将任务需要发送的消息添加到队列尾。 2.如果队列满,任务会阻塞(等待)。 3.用户可以指定等待时间。 4.当其它任务从其等待的队列中读取入了数据&#xff08;这时候队列未满…...

【计算机组成原理】CPU的工作原理

一.CPU的组成结构 CPU主要有运算器、控制器、寄存器和内部总线等组成&#xff0c;其大概的样子长这样&#xff1a; 看不懂没关系&#xff0c;我们将采用自顶而下的方法来讲解CPU的具体工作原理&#xff0c;我们首先来说一下什么叫寄存器&#xff0c;顾名思义&#xff0c;寄存器…...

部署ELK

一、elasticsearch #拉取镜像 docker pull elasticsearch:7.12.1 #创建ELK docker网络 docker network create elk #启动ELK docker run -d --name es --net elk -P -e "discovery.typesingle-node" elasticsearch:7.12.1 #拷贝配置文件 docker cp es:/usr/share/el…...

纯前端实现图片验证码

前言 之前业务系统中验证码一直是由后端返回base64与一个验证码的字符串来实现的&#xff0c;想了下&#xff0c;前端其实可以直接canvas实现&#xff0c;减轻服务器压力。 实现 子组件&#xff0c;允许自定义图片尺寸(默认尺寸为100 * 40)与验证码刷新时间(默认时间为60秒)…...

#django基本常识01#

1、manage.py 所有子命令的入口&#xff0c;比如&#xff1a; python3 manage.py runserver 启动服务 python3 manage.py startapp 创建应用 python3 manage.py migrate 数据库迁移 直接执行python3 manage.py 可显示所有子命令...

什么是物流RPA?物流RPA解决什么问题?物流RPA实施难点在哪里?

RPA指的是机器人流程自动化&#xff0c;它是一套模拟人类在计算机、平板电脑、移动设备等界面执行任务的软件。通过RPA&#xff0c;可以自动完成重复性、繁琐的工作&#xff0c;提高工作效率和质量&#xff0c;降低人力成本。RPA适用于各种行业和场景&#xff0c;例如财务、人力…...

乐鑫工程部署过程记录

一、获取编译环境 1、下载sdk&#xff0c;ESP-IDF 这里有很多发布版本&#xff0c;当前我选择的是4.4.6&#xff0c;可以选择下载压缩包&#xff0c;也可以git直接clone 2、配置编译环境 我选择的是Linux Ubuntu下部署开发环境 查看入门指南 选择对应的芯片&#xff0c;我…...

to 后接ing形式的情况

look forward to seeing you. (期待着见到你) She admitted to making a mistake. (承认犯了个错误) He is accustomed to working long hours. (习惯于长时间工作)...

我做云原生的那几年

背景介绍 在2020年6月&#xff0c;我加入了一家拥有超过500人的企业。彼时&#xff0c;前端团队人数众多&#xff0c;有二三十名成员。在这样的大团队中&#xff0c;每个人都要寻找自己的独特之处和核心竞争力。否则&#xff0c;你可能会沉没于常规的增删改查工作中&#xff0…...

@EventListener注解使用说明

在Java的Spring框架中&#xff0c;EventListener注解用于监听和处理应用程序中的各种事件。通过使用EventListener注解&#xff0c;开发人员可以方便地实现事件驱动的编程模型&#xff0c;提高代码的灵活性和可维护性。本文将详细探讨EventListener注解的使用方法和作用&#x…...

算法通关村第五关-白银挑战实现队列

大纲 队列基础队列的基本概念和基本特征实现队列队列的基本操作Java中的队列 队列基础 队列的基本概念和基本特征 队列的特点是节点的排队次序和出队次序按入队时间先后确定&#xff0c;即先入队者先出队&#xff0c;后入队者后出队&#xff0c;即我们常说的FIFO(first in fi…...

协力共创智能未来:乐鑫 ESP RainMaker 云方案线下研讨会圆满落幕

近日&#xff0c;乐鑫 ESP RainMaker 云方案线下研讨会&#xff08;深圳&#xff09;在亚马逊云科技与合作伙伴嘉宾的支持下成功举办&#xff0c;吸引了众多来自智能家电、照明电工、能源和宠物等行业的品牌客户、方案商和制造商。研讨会围绕如何基于乐鑫 ESP RainMaker 硬件连…...

读取谷歌地球的kml文件中的经纬度坐标

最近我在B站上传了如何获取研究边界的视频&#xff0c;下面分享一个可以读取kml中经纬度的matlab函数&#xff0c;如此一来就可以获取任意区域的经纬度坐标了。 1.谷歌地球中划分区域 2.matlab读取kml文件 function [sname,lon,lat] kml2xy(ip_kml) % ip_kml ocean_distubu…...

1深度学习李宏毅

目录 机器学习三件事&#xff1a;分类&#xff0c;预测和结构化生成 2、一般会有经常提到什么是标签label&#xff0c;label就是预测值&#xff0c;在机器学习领域的残差就是e和loss​编辑3、一些计算loss的方法&#xff1a;​编辑​编辑 4、可以设置不同的b和w从而控制loss的…...

Flask_Login使用与源码解读

一、前言 用户登录后&#xff0c;验证状态需要记录在会话中&#xff0c;这样浏览不同页面时才能记住这个状态&#xff0c;Flask_Login是Flask的扩展&#xff0c;专门用于管理用户身份验证系统中的验证状态。 注&#xff1a;Flask是一个微框架&#xff0c;仅提供包含基本服务的…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...