当前位置: 首页 > news >正文

yolox转rknn

  • 使用瑞芯微版本的yolox:https://github.com/airockchip/YOLOX
  • pip install torch==1.8.1 torchvision==0.9.1 torchaudio==0.8.1 --no-cache -i https://pypi.tuna.tsinghua.edu.cn/simple
  • pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache
  • 参考这里准备数据、修改代码
  • python setup.py develop
  • 训练:python -m yolox.tools.train -f exps/example/yolox_voc/yolox_voc_tiny.py -d 1 -b 2 --fp16 -c yolox_tiny.pth
  • 批量测试:python tools/demo.py image -f exps/example/yolox_voc/yolox_voc_tiny.py -c YOLOX_outputs/yolox_voc_tiny/best_ckpt.pth --path ~/lwd/data --conf 0.25 --nms 0.45 --save_result --device gpu
  • 转化成pt格式:python tools/export_torchscript.py -f exps/example/yolox_voc/yolox_voc_tiny.py -c YOLOX_outputs/yolox_voc_tiny/best_ckpt.pth --rknpu rk3588
  • pt转rknn代码:https://github.com/airockchip/rknn_model_zoo
  • cd rknn_model_zoo/models/CV/object_detection/yolo/RKNN_model_convert
  • 按自己的模型参数修改yolox.yml
  • sh convert_yolox.sh
  • 生成的模型在model_cvt里

相关文章:

yolox转rknn

使用瑞芯微版本的yolox:https://github.com/airockchip/YOLOXpip install torch1.8.1 torchvision0.9.1 torchaudio0.8.1 --no-cache -i https://pypi.tuna.tsinghua.edu.cn/simplepip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --…...

llava1.5模型安装、预测、训练详细教程

引言 本博客介绍LLava1.5多模态大模型的安装教程、训练教程、预测教程,也会涉及到hugging face使用与wandb使用。 源码链接:点击这里 demo链接:点击这里 论文链接:点击这里 一、系统环境 ubuntu 20.04 gpu: 2*3090 cuda:11.6 二、LLava环境安装 1、代码下载…...

一个ppt带你读懂网络安全行业四大顶会之一的ndss论文<<Large Language Model guided Protocol Fuzzing>>

论文下载地址: Large Language Model guided Protocol Fuzzing...

ajax调用springboot后台接口

工具 api测试工具 由于后台接口不是同一个团队编写的,在文档缺失的情况下,需要测试后台接口接收参数类型,可以使用这个工具,注册很方便 页面如下所示,可以选择请求方法是get,或者post 重点介绍两种&…...

2021-arxiv-LoRA Low-Rank Adaptation of Large Language Models

2021-arxiv-LoRA Low-Rank Adaptation of Large Language Models Paper: https://arxiv.org/abs/2106.09685 Code: https://github.com/microsoft/LoRA 大型语言模型的LoRA低秩自适应 自然语言处理的一个重要范式包括对通用领域数据的大规模预训练和对特定任务或领域的适应。…...

dockefile

文章目录 应用的部署MySql的部署Tomcat的部署 dockerfileDocker原理镜像的制作容器转镜像Dockerfile 服务编排Docker Compose Docker 私有仓库 应用的部署 搜索app的镜像拉去app的镜像创建容器操作容器中的app MySql的部署 容器内的网络服务和外部机器无法直接通信外部机器和…...

rpc入门笔记 0x02 protobuf的杂七杂八

syntax "proto3"; // 这是个proto3的文件message HelloRequest{ // 创建数据对象string name 1; // name表示名称,编号是1 }生成python文件 安装grpcio和grpcio-tools库 pip install grpcio #安装grpc pip install grpcio-tools #安装grpc tools生成…...

keepalived与nginx与MySQL

keepalived VRRP介绍 集群(cluster)技术是一种较新的技术,通过集群技术,可以在付出较低成本的情况下获得在性能、可靠性、灵活性方面的相对较高的收益,其任务调度则是集群系统中的核心技术。 集群组成后,可…...

Pod基础概念

Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是围绕着Pod来进行支撑和扩展Pod功能的,例如,用于管理Pod运行的StatefulSet和Deployment等控…...

WebDAV之π-Disk派盘 + 一叶日记

推荐一款操作方便、界面简洁,记录生活点滴与心情,具有诗情画意的日记软件。 一叶日记是一款记录日记的手机软件,在这款软件中它里面有着各种不同的工具,可以方便用户去随时随地的记录日记,同时里面还有着各种不同的主题背景,可以供用户去选择使用各种功能,给用户记录带…...

在IDEA运行spark程序(搭建Spark开发环境)

建议大家写在Linux上搭建好Hadoop的完全分布式集群环境和Spark集群环境,以下在IDEA中搭建的环境仅仅是在window系统上进行spark程序的开发学习,在window系统上可以不用安装hadoop和spark,spark程序可以通过pom.xml的文件配置,添加…...

无穷级数例子

计算 lim ⁡ x → ∞ ( 1 n 1 1 n 2 1 n 3 . . . 1 n 2 n − 1 1 n 2 n ) 计算\lim _{x\to \infty} (\frac{1}{n1} \frac{1}{n2}\frac{1}{n3} ... \frac{1}{n2n-1} \frac{1}{n2n} ) 计算x→∞lim​(n11​n21​n31​...n2n−11​n2n1​) 解: lim ⁡ x …...

C++构造函数和析构函数详解

一、构造函数 1、概念 构造函数是特殊的成员函数,需要注意的是,构造函数虽然名叫做构造,但是构造函数的主要任务并不是开空间创建对象,而是初始化对象。 2、特征 函数名与类名相同。无返回值对象实例化时编译器自动调用对应的…...

MySQL数据库干货_16—— SQL99标准中的查询

SQL99标准中的查询 MySQL5.7 支持部分的SQL99 标准。 SQL99中的交叉连接(CROSS JOIN) 示例: 使用交叉连接查询 employees 表与 departments 表。 select * from employees cross join departments;SQL99中的自然连接(NATURAL JOIN) 自然连接 连接只能发生在两…...

LLM大语言模型训练中常见的技术:微调与嵌入

微调(Fine-Tuning): 微调是一种用于预训练语言模型的技术。在预训练阶段,语言模型(如GPT-3.5)通过大规模的文本数据集进行训练,从而学会了语言的语法、语义和世界知识。然后,在微调阶…...

每日一练 | 网络工程师软考真题Day47

阅读以下关于Linux文件系统和Samba效劳的说明,答复以下【问题1】至【问题3】。 【说明】 Linux系统采用了树型多级目录来管理文件,树型结构的最上层是根目录,其他的所有目录都是从根目录生成的。通过Samba可以实现基于Linux操作系统的效劳器和…...

Kafka - 监控工具 Kafka Eagle:实时洞察Kafka集群的利器

文章目录 引言Kafka Eagle简介Kafka Eagle的特点Kafka Eagle的优势使用Kafka Eagle的步骤结论 引言 在现代大数据架构中,Apache Kafka已成为一个不可或缺的组件,用于可靠地处理和传输大规模的数据流。然而,随着Kafka集群规模的不断增长&…...

infercnv hpc东南服务器 .libpath 最终使用monocle2环境安装

安装不成功就用conda安装 conda install -c bioconda bioconductor-infercnv Installing infercnv There are several options for installing inferCNV. Choose whichever you prefer: Option A: Install infercnv from BioConductor (preferred) From within R, run the…...

【音视频 | Ogg】RFC3533 :Ogg封装格式版本 0(The Ogg Encapsulation Format Version 0)

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...

Hadoop时代落幕,开源大数据将何去何从?

Hadoop时代落幕,谁是大数据的新宠儿? 1、 1、...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

企业如何增强终端安全?

在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

免费数学几何作图web平台

光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...