当前位置: 首页 > news >正文

【改进灰狼优化算法】改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)

👨‍🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 文献来源
🌈4 Matlab代码实现

💥1 概述

文献来源:

摘要:在分析灰狼优化算法不足的基础上,提出一种改进的灰狼优化算法(CGWO),该算法采用基于余弦规律变化的收敛因子,平衡算法的全局搜索和局部搜索能力,同时引入基于步长欧氏距离的比例权重更新灰狼位置,从而加快算法的收敛速度。对8个经典测试函数进行仿真实验,结果表明CGWO算法的求解精度更高,稳定性更好。最后以预测谷氨酸菌体生长浓度为例,利用CGWO算法估计Richards模型的参数,以均方根误差和平均绝对误差作为评价指标,与PSO算法、GA算法和VS-FOA算法的结果进行比较,CGWO算法可以有效地估计Richards模型中的参数。

关键词:

灰狼优化算法;收敛因子;Richards模型;参数估计;

📚2 运行结果

部分代码:

function [Alpha_score,Alpha_pos,Convergence_curve]=CGWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)

%% 收敛因子参数

aintit = 2;

afinal = 0;

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop

while l<Max_iter

for i=1:size(Positions,1)

% Return back the search agents that go beyond the boundaries of the search space

Flag4ub=Positions(i,:)>ub;

Flag4lb=Positions(i,:)<lb;

Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;

% Calculate objective function for each search agent

fitness=fobj(Positions(i,:));

% Update Alpha, Beta, and Delta

if fitness<Alpha_score

Alpha_score=fitness; % Update alpha

Alpha_pos=Positions(i,:);

end

if fitness>Alpha_score && fitness<Beta_score

Beta_score=fitness; % Update beta

Beta_pos=Positions(i,:);

end

if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score

Delta_score=fitness; % Update delta

Delta_pos=Positions(i,:);

end

end

%% 改进点:收敛因子改进,文献中式(7)

n = 1;%递减系数

if(l<0.5*Max_iter)

a = afinal + (aintit - afinal)*(1 + (cos((l-1)*pi/( Max_iter-1)))^n)/2;

else

a = afinal + (aintit - afinal)*(1 - (cos((l-1)*pi/( Max_iter-1)))^n)/2;

end

% Update the Position of search agents including omegas

for i=1:size(Positions,1)

for j=1:size(Positions,2)

r1=rand(); % r1 is a random number in [0,1]

r2=rand(); % r2 is a random number in [0,1]

A1=2*a*r1-a; % Equation (3.3)

C1=2*r2; % Equation (3.4)

D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

r1=rand();

r2=rand();

A2=2*a*r1-a; % Equation (3.3)

C2=2*r2; % Equation (3.4)

D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2

r1=rand();

r2=rand();

A3=2*a*r1-a; % Equation (3.3)

C3=2*r2; % Equation (3.4)

D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3

%% 改进点:基于步长欧氏距离的比例权重

S = abs(X1) + abs(X2)+abs(X3);

if S~=0 %防止分母为0

W1 = abs(X1)/(abs(X1) + abs(X2)+abs(X3));

W2 = abs(X2)/(abs(X1) + abs(X2)+abs(X3));

W3 = abs(X3)/(abs(X1) + abs(X2)+abs(X3));

else

W1=1;W2=1;W3=1;

end

Positions(i,j)=(W1*X1+X2*W2+X3*W3)/3;% Equation (3.7)

end

end

l=l+1;

Convergence_curve(l)=Alpha_score;

end

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]王秋萍,王梦娜,王晓峰.改进收敛因子和比例权重的灰狼优化算法[J].计算机工程与应用,2019,55(21):60-65+98.

🌈4 Matlab代码实现

相关文章:

【改进灰狼优化算法】改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5;&#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密…...

Linux C代码获取线程ID

Linux C代码获取线程ID gettid可以获取线程id,但是通过man gettid可以看到下面这两句 也就是说glibc没有为这个gettid封装系统调用&#xff0c;需要使用syscall。 #define _GNU_SOURCE#include <unistd.h>#include <sys/syscall.h>#include <sys/types.h>pi…...

基本密码技术

AESAES取代DES&#xff0c;是一种对称加密技术&#xff0c;分为AES-128/192/256, 其分组长度固定为128b&#xff0c;若最后一个分组长度不够&#xff0c;需要补全至128b长度。所支持的秘钥长度分别为128b/192b/256b.分组密码模式AES是对明文进行分组之后逐块进行加密&#xff0…...

【力扣周赛#334】6369. 左右元素和的差值 + 6368. 找出字符串的可整除数组 + 6367. 求出最多标记下标

目录 6369. 左右元素和的差值 - 前缀后缀和 ac 6368. 找出字符串的可整除数组 - 操作余数ac 6367. 求出最多标记下标 - 二分答案 贪心 6369. 左右元素和的差值 - 前缀后缀和 ac class Solution {public int[] leftRigthDifference(int[] nums) {int nnums.length;int[] re…...

行测-判断推理-图形推理-位置规律-平移

位置平移&#xff0c;选D空白每次顺时针移动一格&#xff0c;黑色圆每次逆时针移动2格选C两个黑色⚪&#xff0c;每次顺时针移动2格白色⚪&#xff0c;先到对角位置&#xff0c;再顺时针移动一格选B三角形的底&#xff0c;顺时针移动三角形的顶点&#xff0c;在正方形的内部顺时…...

数据库基础知识(一)

目录 什么是数据库 表&#xff0c;列&#xff0c;行 主键 什么是SQL 什么是数据库 数据库(database):保存有组织的数据的容器&#xff08;通常是一个文件或一组文件&#xff09;。 数据库软件(DMBS):又名数据库管理系统。数据库是通过数据库软件创建和操纵的容器。因为你并…...

MyBatis 的工作原理解析

文章目录前言一、mybatis工作原理1.1 流程图1.2 步骤解析1.3 代码实现前言 本文记录 Mybatis 的工作原理&#xff0c;做到知识梳理总结的作用。 一、mybatis工作原理 Mybatis 的总体工作原理流程图如下图所示 1.1 流程图 1.2 步骤解析 Mybatis 框架在工作时大致经过8个步骤…...

终端软件架构说

目录 零&#xff1a;前言 一&#xff0c;基于服务的架构 二&#xff0c;基于多进程多线程的架构 三&#xff0c;以数据为中心的架构 四&#xff0c;类Android的分层架构设计 五&#xff0c;总结 零&#xff1a;前言 谈到架构&#xff0c;可能大家的第一感觉是信息系统的…...

LearnOpenGL-入门-你好,三角形

本人刚学OpenGL不久且自学&#xff0c;文中定有代码、术语等错误&#xff0c;欢迎指正 我写的项目地址&#xff1a;https://github.com/liujianjie/LearnOpenGLProject LearnOpenGL中文官网&#xff1a;https://learnopengl-cn.github.io/ 文章目录图形渲染管线基本介绍着色器…...

SOEM 源码解析 ecx_init_redundant

/* Initialise lib in redundant NIC mode* 在冗余网卡模式下初始化lib库* param[in] context context struct* 上下文结构体* param[in] redport pointer to redport, redundant port data* 指向冗余端口的指针&#xff…...

网页唤起 APP中Activity的实现原理

疑问的开端大家有没有想过一个问题&#xff1a;在浏览器里打开某个网页&#xff0c;网页上有一个按钮点击可以唤起App。这样的效果是怎么实现的呢&#xff1f;浏览器是一个app&#xff1b;为什么一个app可以调起其他app的页面&#xff1f;说到跨app的页面调用&#xff0c;大家是…...

【操作系统】概述

基本特征 1. 并发 并发是指宏观上在一段时间内能同时运行多个程序&#xff0c;而并行则指同一时刻能运行多个指令。 并行需要硬件支持&#xff0c;如多流水线、多核处理器或者分布式计算系统。 操作系统通过引入进程和线程&#xff0c;使得程序能够并发运行 2. 共享 共享…...

Flume三种组件的选择对比

文章目录1.source2.channel3.sink1.source Source: 数据源:通过source组件可以指定让Flume读取哪里的数据&#xff0c;然后将数据传递给后面的 channel Flume内置支持读取很多种数据源&#xff0c;基于文件、基于目录、基于TCP\UDP端口、基于HTTP、Kafka的 等等、当然了&#x…...

响应性基础API

一.什么是proxy和懒代理&#xff1f;什么是proxy?proxy对象是用于定义基本操作的自定义行为(如&#xff1a;属性查找&#xff0c;赋值&#xff0c;枚举&#xff0c;函数调用等等)。什么是懒代理&#xff1f;懒代理&#xff1a;在初始化的时候不会进行全部代理&#xff0c;而是…...

剑指 Offer 25. 合并两个排序的链表

剑指 Offer 25. 合并两个排序的链表 难度&#xff1a;easy\color{Green}{easy}easy 题目描述 输入两个递增排序的链表&#xff0c;合并这两个链表并使新链表中的节点仍然是递增排序的。 示例1&#xff1a; 输入&#xff1a;1->2->4, 1->3->4 输出&#xff1a;1…...

顿悟日记(一)

目录2023年1月顿悟日记&#xff1a;2023年2月24日顿悟日记&#xff1a;2023年2月25日顿悟日记&#xff1a;2023年2月26日顿悟日记&#xff1a;顿悟的经历是如此的奇妙&#xff0c;且让人亢奋的事情。 2023年1月顿悟日记&#xff1a; 1.我是面向对象还是面向过程&#xff1f; …...

前端卷算法系列(二)

前端卷算法系列&#xff08;二&#xff09; 回文数 给你一个整数 x &#xff0c;如果 x 是一个回文整数&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 回文数是指正序&#xff08;从左向右&#xff09;和倒序&#xff08;从右向左&#xff09;读都是一样…...

网络应用之HTTP响应报文

HTTP响应报文学习目标能够知道HTTP响应报文的结构1. HTTP响应报文分析HTTP 响应报文效果图:响应报文说明:--- 响应行/状态行 --- HTTP/1.1 200 OK # HTTP协议版本 状态码 状态描述 --- 响应头 --- Server: Tengine # 服务器名称 Content-Type: text/html; charsetUTF-8 # 内容类…...

常见的CSS技巧

1.禁止长按图片弹出菜单 img {-webkit-touch-callout: none; // 主要用于禁止长按菜单。主针对webkit内核的浏览器&#xff1b; } /*或者 user-select , 是css3的新属性&#xff0c;用于设置用户是否能够选中文本*/ .img {-webkit-user-select: none;-khtml-user-select: none…...

算法进阶-动态规划

经典例题 大家肯定想用递归做 思路大概就是这样 递归到最后一行就是对应的D(i,j) 然后往上推 但是这样会超时&#xff0c;因为存在大量的重复计算 比如调用第一行MasSum(7)需要调用MaxSum(3)和MaxSum(8) 但是调用第二行MaxSum(3)还要调用3行的MaxSum(8)和3行的MaxSum(1) 第二行…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...