JVM - G1垃圾收集器深入剖析
1、G1收集器概述
HotSpot团队一直努力朝着高效收集、减少停顿(STW: Stop The World)的方向努力,也贡献了从串行Serial收集器、到并行收集器Parallerl收集器,再到CMS并发收集器,乃至如今的G1在内的一系列优秀的垃圾收集器。
G1(Garbage First)垃圾收集器关注最小时延的垃圾回收器,也同样适合大尺寸堆内存的垃圾收集。
1.1、G1收集器的最大特点
-
G1最大的特点是引入分区的思路,弱化了分代的概念。
-
合理利用垃圾收集各个周期的资源,解决了其他收集器甚至CMS的众多缺陷。
1.2、G1相比较CMS的改进
-
算法:G1基于标记-整理算法, 不会产生空间碎片,分配大对象时不会无法得到连续的空间而提前触发一次FULL GC。
-
停顿时间可控:G1可以通过设置预期停顿时间(Pause Time)来控制垃圾收集时间避免应用雪崩现象。
-
并行与并发:G1能更充分的利用CPU,多核环境下的硬件优势来缩短stop the world的停顿时间。
1.3、CMS和G1的区别
-
CMS中,堆被分为PermGen,YoungGen,OldGen;而YoungGen又分了两个survivo区域。在G1中,堆被平均分成几个区域(region),在每个区域中,虽然也保留了新老代的概念,但是收集器是以整个区域为单位收集的。
-
G1在回收内存后会马上同时做合并空闲内存的工作、而CMS默认是在STW(stop the world)的时候做。
-
G1会在Young GC中使用、而CMS只能在O区使用。
1.4、G1收集器的应用场景
G1垃圾收集算法主要应用在多CPU大内存的服务中,在满足高吞吐量的同时,尽可能的满足垃圾回收时的暂停时间。
就目前而言、CMS还是默认首选的GC策略、可能在以下场景下G1更适合:
-
服务端多核CPU、JVM内存占用较大的应用(至少大于4G)
-
应用在运行过程中会产生大量内存碎片、需要经常压缩空间
-
想要更可控、可预期的GC停顿周期,防止高并发下应用雪崩现象
2、G1的堆内存算法
2.1、G1之前的JVM内存模型
- 新生代:伊甸园区(eden space) + 2个幸存区
-
老年代
-
持久代(perm space):JDK1.8之前
-
元空间(metaspace):JDK1.8之后取代持久代
2.2、G1收集器的内存模型
2.2.1、G1堆内存结构
堆内存会被切分成为很多个固定大小区域(Region),每个是连续范围的虚拟内存。
堆内存中一个区域(Region)的大小可以通过-XX:G1HeapRegionSize参数指定,大小区间最小1M、最大32M,总之是2的幂次方。
默认把堆内存按照2048份均分。
2.2.2、G1堆内存分配
每个Region被标记了E、S、O和H,这些区域在逻辑上被映射为Eden,Survivor和老年代。
存活的对象从一个区域转移(即复制或移动)到另一个区域。区域被设计为并行收集垃圾,可能会暂停所有应用线程。
如上图所示,区域可以分配到Eden,survivor和老年代。此外,还有第四种类型,被称为巨型区域(Humongous Region)。Humongous区域是为了那些存储超过50%标准region大小的对象而设计的,它用来专门存放巨型对象。如果一个H区装不下一个巨型对象,那么G1会寻找连续的H分区来存储。为了能找到连续的H区,有时候不得不启动Full GC。
3、G1回收流程
在执行垃圾收集时,G1以类似于CMS收集器的方式运行。
3.1、G1收集器的阶段分以下几个步骤:
3.1.1、G1执行的第一阶段:初始标记(Initial Marking )
这个阶段是STW(Stop the World )的,所有应用线程会被暂停,标记出从GC Root开始直接可达的对象。
3.1.2、G1执行的第二阶段:并发标记
从GC Roots开始对堆中对象进行可达性分析,找出存活对象,耗时较长。当并发标记完成后,开始最终标记(Final Marking )阶段
3.1.3、最终标记(标记那些在并发标记阶段发生变化的对象,将被回收)
3.1.4、筛选回收
首先对各个Regin的回收价值和成本进行排序,根据用户所期待的GC停顿时间指定回收计划,回收一部分Region
最后,G1中提供了两种模式垃圾回收模式,Young GC和Mixed GC,两种都是Stop The World(STW)的。
4、G1的GC模式
4.1、YoungGC年轻代收集
在分配一般对象(非巨型对象)时,当所有eden region使用达到最大阀值并且无法申请足够内存时,会触发一次YoungGC。每次younggc会回收所有Eden以及Survivor区,并且将存活对象复制到Old区以及另一部分的Survivor区。
YoungGC的回收过程如下:
-
根扫描,跟CMS类似,Stop the world,扫描GC Roots对象。
-
处理Dirty card,更新RSet.
-
扫描RSet,扫描RSet中所有old区对扫描到的young区或者survivor去的引用。
-
拷贝扫描出的存活的对象到survivor2/old区
-
处理引用队列,软引用,弱引用,虚引用
4.2、mixed gc
当越来越多的对象晋升到老年代old region时,为了避免堆内存被耗尽,虚拟机会触发一个混合的垃圾收集器,即mixed gc,该算法并不是一个old gc,除了回收整个young region,还会回收一部分的old region,这里需要注意:是一部分老年代,而不是全部老年代,可以选择哪些old region进行收集,从而可以对垃圾回收的耗时时间进行控制。
G1没有fullGC概念,需要fullGC时,调用serialOldGC进行全堆扫描(包括eden、survivor、o、perm)。
G1的第一个重要特点是为用户的应用程序的提供一个低GC延时和大内存GC的解决方案。这意味着堆大小6GB或更大,稳定和可预测的暂停时间将低于0.5秒。
如果应用程序使用CMS或ParallelOld垃圾回收器具有一个或多个以下特征,将有利于切换到G1:
-
Full GC持续时间太长或太频繁
-
对象分配率或年轻代升级老年代很频繁
-
不期望的很长的垃圾收集时间或压缩暂停(超过0.5至1秒)
注意:如果你正在使用CMS或ParallelOld收集器,并且你的应用程序没有遇到长时间的垃圾收集暂停,则保持与您的当前收集器是很好的,升级JDK并不必要更新收集器为G1。
相关文章:

JVM - G1垃圾收集器深入剖析
1、G1收集器概述 HotSpot团队一直努力朝着高效收集、减少停顿(STW: Stop The World)的方向努力,也贡献了从串行Serial收集器、到并行收集器Parallerl收集器,再到CMS并发收集器,乃至如今的G1在内的一系列优秀的垃圾收集器。 G…...

角度制与弧度制的相互转换np.deg2radnp.rad2deg
【小白从小学Python、C、Java】【计算机等级考试500强双证书】【Python-数据分析】角度制与弧度制的相互转换np.deg2radnp.rad2deg选择题以下关于python代码表述错误的一项是?import numpy as npprint("【执行】np.rad2deg(np.pi)")print(np.rad2deg(np.pi))print(&…...
【SAP Abap】X-DOC:SAP ABAP 语法更新之一(Open SQL新增特性)
SAP ABAP 语法更新之一(Open SQL新增特性)1、前言2、演示1、前言 自从 SAP 推出 SAP ON HANA,与之相随的 AS ABAP NW 7.40 版本以后,ABAP 语法也有了较多的更新,本篇对 Open Sql的语法更新部分做一个DEMO演示。 NW 7…...

【改进灰狼优化算法】改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)
👨🎓个人主页:研学社的博客💥💥💞💞欢迎来到本博客❤️❤️💥💥🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密…...

Linux C代码获取线程ID
Linux C代码获取线程ID gettid可以获取线程id,但是通过man gettid可以看到下面这两句 也就是说glibc没有为这个gettid封装系统调用,需要使用syscall。 #define _GNU_SOURCE#include <unistd.h>#include <sys/syscall.h>#include <sys/types.h>pi…...

基本密码技术
AESAES取代DES,是一种对称加密技术,分为AES-128/192/256, 其分组长度固定为128b,若最后一个分组长度不够,需要补全至128b长度。所支持的秘钥长度分别为128b/192b/256b.分组密码模式AES是对明文进行分组之后逐块进行加密࿰…...

【力扣周赛#334】6369. 左右元素和的差值 + 6368. 找出字符串的可整除数组 + 6367. 求出最多标记下标
目录 6369. 左右元素和的差值 - 前缀后缀和 ac 6368. 找出字符串的可整除数组 - 操作余数ac 6367. 求出最多标记下标 - 二分答案 贪心 6369. 左右元素和的差值 - 前缀后缀和 ac class Solution {public int[] leftRigthDifference(int[] nums) {int nnums.length;int[] re…...

行测-判断推理-图形推理-位置规律-平移
位置平移,选D空白每次顺时针移动一格,黑色圆每次逆时针移动2格选C两个黑色⚪,每次顺时针移动2格白色⚪,先到对角位置,再顺时针移动一格选B三角形的底,顺时针移动三角形的顶点,在正方形的内部顺时…...
数据库基础知识(一)
目录 什么是数据库 表,列,行 主键 什么是SQL 什么是数据库 数据库(database):保存有组织的数据的容器(通常是一个文件或一组文件)。 数据库软件(DMBS):又名数据库管理系统。数据库是通过数据库软件创建和操纵的容器。因为你并…...

MyBatis 的工作原理解析
文章目录前言一、mybatis工作原理1.1 流程图1.2 步骤解析1.3 代码实现前言 本文记录 Mybatis 的工作原理,做到知识梳理总结的作用。 一、mybatis工作原理 Mybatis 的总体工作原理流程图如下图所示 1.1 流程图 1.2 步骤解析 Mybatis 框架在工作时大致经过8个步骤…...

终端软件架构说
目录 零:前言 一,基于服务的架构 二,基于多进程多线程的架构 三,以数据为中心的架构 四,类Android的分层架构设计 五,总结 零:前言 谈到架构,可能大家的第一感觉是信息系统的…...

LearnOpenGL-入门-你好,三角形
本人刚学OpenGL不久且自学,文中定有代码、术语等错误,欢迎指正 我写的项目地址:https://github.com/liujianjie/LearnOpenGLProject LearnOpenGL中文官网:https://learnopengl-cn.github.io/ 文章目录图形渲染管线基本介绍着色器…...
SOEM 源码解析 ecx_init_redundant
/* Initialise lib in redundant NIC mode* 在冗余网卡模式下初始化lib库* param[in] context context struct* 上下文结构体* param[in] redport pointer to redport, redundant port data* 指向冗余端口的指针ÿ…...

网页唤起 APP中Activity的实现原理
疑问的开端大家有没有想过一个问题:在浏览器里打开某个网页,网页上有一个按钮点击可以唤起App。这样的效果是怎么实现的呢?浏览器是一个app;为什么一个app可以调起其他app的页面?说到跨app的页面调用,大家是…...

【操作系统】概述
基本特征 1. 并发 并发是指宏观上在一段时间内能同时运行多个程序,而并行则指同一时刻能运行多个指令。 并行需要硬件支持,如多流水线、多核处理器或者分布式计算系统。 操作系统通过引入进程和线程,使得程序能够并发运行 2. 共享 共享…...

Flume三种组件的选择对比
文章目录1.source2.channel3.sink1.source Source: 数据源:通过source组件可以指定让Flume读取哪里的数据,然后将数据传递给后面的 channel Flume内置支持读取很多种数据源,基于文件、基于目录、基于TCP\UDP端口、基于HTTP、Kafka的 等等、当然了&#x…...

响应性基础API
一.什么是proxy和懒代理?什么是proxy?proxy对象是用于定义基本操作的自定义行为(如:属性查找,赋值,枚举,函数调用等等)。什么是懒代理?懒代理:在初始化的时候不会进行全部代理,而是…...
剑指 Offer 25. 合并两个排序的链表
剑指 Offer 25. 合并两个排序的链表 难度:easy\color{Green}{easy}easy 题目描述 输入两个递增排序的链表,合并这两个链表并使新链表中的节点仍然是递增排序的。 示例1: 输入:1->2->4, 1->3->4 输出:1…...

顿悟日记(一)
目录2023年1月顿悟日记:2023年2月24日顿悟日记:2023年2月25日顿悟日记:2023年2月26日顿悟日记:顿悟的经历是如此的奇妙,且让人亢奋的事情。 2023年1月顿悟日记: 1.我是面向对象还是面向过程? …...

前端卷算法系列(二)
前端卷算法系列(二) 回文数 给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。 回文数是指正序(从左向右)和倒序(从右向左)读都是一样…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
深入理解Optional:处理空指针异常
1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...

MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...

【阅读笔记】MemOS: 大语言模型内存增强生成操作系统
核心速览 研究背景 研究问题:这篇文章要解决的问题是当前大型语言模型(LLMs)在处理内存方面的局限性。LLMs虽然在语言感知和生成方面表现出色,但缺乏统一的、结构化的内存架构。现有的方法如检索增强生成(RA…...