当前位置: 首页 > news >正文

代碼隨想錄算法訓練營|第五十八天|583. 两个字符串的删除操作、72. 编辑距离、编辑距离总结篇。刷题心得(c++)

目录

讀題

583. 两个字符串的删除操作

自己看到题目的第一想法

看完代码随想录之后的想法

72. 编辑距离

看完代码随想录之后的想法

583. 两个字符串的删除操作 - 實作

思路

代碼隨想錄思路

Code

72. 编辑距离 - 實作

思路

Code

编辑距离总结篇

判斷子序列

不同的子序列

兩個字符串的刪除操作

編輯距離

總結

判斷子序列

不同子序列

兩個字符串的刪除操作

編輯距離


讀題

583. 两个字符串的删除操作

自己看到题目的第一想法

如果今天可以兩個都刪除,那在w1[i - 1] 以及 w2[j - 1]的狀況下有三種狀況,兩者匹配,dp[i - 1][j - 1],不使用w1[i - 1]→dp[i - 1][j] 不使用w2[j - 1] → dp[i][j - 1],有用畫圖的方式嘗試理解但仍然無法推出狀態的改變。

看完代码随想录之后的想法

看完之後,才真正了解自己哪裡錯了,首先下標就定義錯了,下標應該是dp[i][j] w1[i - 1]為結尾以及w2[j - 1]為結尾如果想要達到相等,所需要刪除元素的最少次數為dp[i][j]

根據這個定義,如果相等的時候,不用刪除元素,那就會等於不包含當前i - 1 j - 1的 i - 2 j - 2,也就是dp[i][j] = dp[i - 1][j - 1]

如果不相等,則會有三種狀況可以刪除w1 最少操作次數就是不包含當前的w[i - 1]的狀況也就是dp[i - 1][j] + 1 也可以選擇刪除w2 最少操作次數是dp[i][j - 1] + 1,不包含當前w2[j - 1]的最少狀況。

也可以兩個都刪除,也就是dp[i - 1][j - 1] + 2,但這個我們可以思考為,之前的兩種狀況就有包含了,如果刪除w1,那是取不包含w1[i - 1]的狀況,換言之,就是刪除w1[i - 1]的狀況是dp[i - 1][j] ,在這個基礎上再減去w2[j - 1]這一個數就是dp[i - 1][j] + 1。

最後可以簡化為dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

72. 编辑距离

看完代码随想录之后的想法

非常清晰,基本上有寫過之前的題目就會知道其中的門道,跟上一題一樣,先定義好dp[i][j]的定義,在下標word1[i - 1]以及下標word2[j-1],使其相同的最小編輯距離為dp[i][j]。

那就一樣會有兩種狀況相同與不相同

相同的話就是dp[i][j] = dp[i - 1][j - 1]代表不需要任何操作,跟上一次不包含word1[i - 1]以及word2[j - 1]的狀況一致

不相同的話要做增刪換

增和刪可以想成同樣一個,操作數都是一樣的,引用代碼隨想錄中提到的例子

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd' 和 word2添加一个元素'd',变成word1="a", word2="ad", 最终的操作数是一样! dp数组如下图所示意的:

      0     a                   0     a     d+-----+-----+             +-----+-----+-----+0 |  0  |  1  |           0 |  0  |  1  |  2  |+-----+-----+   ===>      +-----+-----+-----+a |  1  |  0  |           a |  1  |  0  |  1  |+-----+-----+             +-----+-----+-----+d |  2  |  1  |+-----+-----+

替換的話代表只需要替換其中一個數就可以一致,那就會是dp[i][j] = dp[i - 1][j - 1] + 1,代表我只要替換word1 或者word2就可以使得兩者相同。使用dp[i - 1][j - 1]的緣故是,這個數不包含word1、或word2,所以如果只需要替換一個數就可以達成,那就是將這個數加一就好

583. 两个字符串的删除操作 - 實作

思路

  1. 定義DP數組以及下標的含意

    i - 1 下標的word1以及 j - 1 下標的word2,要達到相同的子序列最少需要刪除多少次為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    相同的話代表不用刪除,也就是dp[i - 1][j - 1]即為上一次不包含當前兩個數的狀況

    不相同的話有三種狀況

    • 刪除word1
      • 代表不包含當前word1的狀況在加上一個刪除的個數也就是dp[i - 1][j] + 1
    • 刪除word2
      • 代表不包含當前word2的狀況再加上1個刪除數,也就是dp[i][j - 1] + 1
    • 刪除word1、word2
      • 代表不包含當前word1、word2的狀況加上兩個刪除數,也就是dp[i - 1][j - 1] + 2
      • 但可以換個角度來看,如果刪除word1或word2時,我們要先得知不包含word1或word2的狀況,也就是dp[i - 1][j] 或 dp[i][j - 1] 也就是說這兩個狀態組都代表已經忽略word1 以及word 2時,當前的狀況,那在這個基礎上再加1,也可以理解為在忽略word1的狀況下在刪除word2 就會是將word1、word2都刪除的狀況,也就是dp[i - 1][j] + 1。
  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    因為兩者都可以刪除,所以在初始話時,空字符串都是0,因為不用刪除,其他的部分則根據當前的位置,刪除不同數量的word即可以成為空字符串,也就是要刪除i 個或j個字,字符串才會為空

  4. 確定遍歷順序

    因為需要左上角的數據來進行遍歷,所以是由前往後。

代碼隨想錄思路

Code

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp (word1.size() + 1, vector<int>(word2.size() + 1, 0));for(int i = 0; i <= word1.size(); i++) dp[i][0] = i;for(int j = 0; j <= word2.size(); j++) dp[0][j] = j;for(int i = 1; i <= word1.size(); i++) {for(int j = 1; j <= word2.size(); j++) {if(word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);}}return dp[word1.size()][word2.size()];}
};

72. 编辑距离 - 實作

思路

  1. 定義DP數組以及下標的含意

    i - 1 下標的word1以及 j - 1 下標的word2,要達到相同的子序列最少需要編輯多少次為dp[i][j]

  2. 遞推公式

    分成兩種狀態相同與不相同

    相同的話代表不用編輯,也就是dp[i - 1][j - 1]即為上一次不包含當前兩個數的狀況

    不相同的話有三種狀況,取最小的

    • 刪除\添加 word1
      • 代表不包含當前word1的狀況在加上一個刪除\添加的個數也就是dp[i - 1][j] + 1
    • 刪除\添加 word2
      • 代表不包含當前word2的狀況再加上1個刪除\添加數,也就是dp[i][j - 1] + 1
    • 替換
      • 代表不包含當前word1、word2的狀況加上一個操作,也就是dp[i - 1][j - 1] + 1
  3. 根據遞推公式、題意以及定義,確定DP數組如何初始化

    當j - 1以及 i - 1的word1、word2需要初始化時,需要刪除i個或j個字符才會等於空字符

  4. 確定遍歷順序

    總共有四個遞推公式

    dp[i][j] = dp[i - 1][j - 1]

    dp[i][j] = dp[i - 1][j - 1] + 1

    dp[i][j] = dp[i - 1][j] + 1

    dp[i][j] = dp[i][j - 1] + 1

    因為需要左上角的數據來進行遍歷,所以是由前往後。

Code

class Solution {
public:int minDistance(string word1, string word2) {vector<vector<int>> dp (word1.size() + 1, vector<int>(word2.size() + 1));for(int i = 0; i <= word1.size(); i++) dp[i][0] = i;for(int j = 0; j <= word2.size(); j++) dp[0][j] = j;for(int i = 1; i <= word1.size(); i++) {for(int j = 1; j <= word2.size(); j++) {if(word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1];else dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;}}return dp[word1.size()][word2.size()];}
};

编辑距离总结篇

判斷子序列

定義: dp[i][j] 代表 i - 1 的s 和 j - 1 的t 相同子序列的長度為dp[i][j]

根據這個定義,我們可以知道當兩者相同時,長度要加一

如果不相等時,則可以視為忽略當下的t[j - 1]取t的前一個數也就是t[j - 2] → dp[i][j] = dp[i][j - 1]

不同的子序列

定義: dp[i][j]: 以i - 1為結尾s子序列當中,出現以j - 1為結尾t的個數為dp[i][j]

根據定義

  • 兩者相等時有兩種狀況

    我可以使用s[i - 1]也可以不使用s[i - 1] 因為定義是i - 1為結尾的s子序列中,出現以j - 1為結尾的t個數

    所以在使用s[i - 1]的狀況,我不用刪除任何元素,所以我的值會是dp[i - 1][j - 1]即上一次的狀況,

    如果不使用s[i - 1]的狀況,我等同於只需要不考慮s[i - 1] 但t[j - 1]仍然在,所以值會是dp[i - 1][j]

    相同時的轉移方程就會是dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

  • 兩者不相等時相當於s 要刪除元素,因為 s的字符串中,這個位置並沒有t的字串,所以要刪除

    如果是s要刪除元素,那就是取s[i - 2] 這個不包含s[ i -1]的最大值,但t是要比較的子序列,所以t不用動,也就是說這個dp[i][j]會是由s[i - 2]t[j - 1]所組成,所對應的dp數組是dp[i][j] = dp[i - 1][j]。

初始化:

dp[i][0] 一定都是1,因為把s全部刪除後出現空字符的個數就是一

dp[0][j] 因為s無論如何都無法變成t,所以都是0

dp[0][0] 空字符串s可以刪除0個元素變成空字符串t,所以等於1

兩個字符串的刪除操作

定義: i - 1 下標的word1以及 j - 1 下標的word2,要達到相同的子序列最少需要刪除多少次為dp[i][j]

根據這個定義轉移方程會有兩個狀況

  • 兩者相同

相同的話代表不用刪除,也就是dp[i - 1][j - 1]即為上一次不包含當前兩個數的狀況

  • 兩者不相同

不相同的話有三種狀況

  • 刪除word1
    • 代表不包含當前word1的狀況在加上一個刪除的個數也就是dp[i - 1][j] + 1
  • 刪除word2
    • 代表不包含當前word2的狀況再加上1個刪除數,也就是dp[i][j - 1] + 1
  • 刪除word1、word2
    • 代表要不包含word1以及word2的值,也就是dp[i - 1][j - 1] ,並加上刪除兩次,所以是dp[i - 1][j - 1] + 2
    • 但也可以想成取word1不存在的部分也就是dp[i - 1][j],並刪除word2,也就是dp[i - 1][j] + 1,反之也可以想成word2不存在。
  • 那因為我們要找出最少需要刪除多少次,所以就是取刪除狀況中最小的數值+1

狀態轉移方程就會是 dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1;

初始化的部分就是要如何將i - 1結尾的word1以及j - 1結尾的word2 刪除至空字符串,就會需要i, j 次的刪除次數才行。

編輯距離

定義: i - 1 下標的word1以及 j - 1 下標的word2,要達到相同的子序列最少需要操作多少次為dp[i][j]

這一題其實就是前面的部分,只是要想明白相同時要做甚麼、不相同時要做甚麼

如果相同,則不操作

不相同則需要找出最小的增、刪、替換的方案

增加跟刪除可以想成同一個操作數

  • 需要增刪word1時,都是取dp[i - 1][j] + 1
  • 需要增刪word2時,都是取dp[i][j - 1] + 1
  • 至於增刪word1、word2則跟之前一樣,可以簡化成上述的兩個式子
  • 需要替換word1或word2的話,則需要取這兩個都不存在的部分加上一次操作數也就是dp[i - 1][j - 1] + 1

所以得出四個轉移方程

if(word1[i - 1] == word2[j - 1])

dp[i][j] = dp[i - 1][j - 1];

else

dp[i][j] = min(min(dp[i - 1][j], dp[i][j - 1]), dp[i - 1][j - 1]) + 1;

總結


在編輯距離的題目當中,有個很重要的核心就是定義好dp[i][j]的定義,在根據這個定義,去推導出公式以及初始化的方式

其實前三題很重要的思維就是對於刪除的理解,在不同的定義上刪除的做法都不太一樣

判斷子序列

刪除是dp[i][j - 1],忽略前一個t

不同子序列

使用s[i - 1]的,我不用刪除任何元素,所以值會是dp[i - 1][j - 1]即上一次的狀況,

如果不使用s[i - 1]的狀況,我等同於只需要不考慮s[i - 1] 但t[j - 1]仍然在,所以值會是dp[i - 1][j]

相同時的轉移方程就會是dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

兩者不相等時相當於s 要刪除元素,因為 s的字符串中,這個位置並沒有t的字串,所以要刪除

如果是s要刪除元素,那就是取s[i - 2] 這個不包含s[ i -1]的最大值,但t是要比較的子序列,所以t不用動,也就是說這個dp[i][j]會是由s[i - 2]t[j - 1]所組成,所對應的dp數組是dp[i][j] = dp[i - 1][j]。

兩個字符串的刪除操作

  • 刪除word1
    • 代表不包含當前word1的狀況在加上一個刪除的個數也就是dp[i - 1][j] + 1
  • 刪除word2
    • 代表不包含當前word2的狀況再加上1個刪除數,也就是dp[i][j - 1] + 1
  • 刪除word1、word2
    • 代表要不包含word1以及word2的值,也就是dp[i - 1][j - 1] ,並加上刪除兩次,所以是dp[i - 1][j - 1] + 2

編輯距離

所謂的增刪基本上是同一個操作數,只是需要明確甚麼是替換,以及下標定義為何

  • 需要增刪word1時,都是取dp[i - 1][j] + 1
  • 需要增刪word2時,都是取dp[i][j - 1] + 1
  • 需要替換word1或word2的話,則需要取這兩個都不存在的部分加上一次操作數也就是dp[i - 1][j - 1] + 1

整體而言編輯距離透過這幾天的理解過後,透過這次的總結,對於這類題目有更深的了解了。

相关文章:

代碼隨想錄算法訓練營|第五十八天|583. 两个字符串的删除操作、72. 编辑距离、编辑距离总结篇。刷题心得(c++)

目录 讀題 583. 两个字符串的删除操作 自己看到题目的第一想法 看完代码随想录之后的想法 72. 编辑距离 看完代码随想录之后的想法 583. 两个字符串的删除操作 - 實作 思路 代碼隨想錄思路 Code 72. 编辑距离 - 實作 思路 Code 编辑距离总结篇 判斷子序列 不同…...

JavaScript基础之BOM与DOM

文章目录 BOM操作window对象window的子对象之navigator对象&#xff08;了解即可&#xff09;window的子对象之screen对象&#xff08;了解即可&#xff09;window的子对象之history对象&#xff08;了解即可&#xff09;window的子对象之location对象 弹出框警告框确认框提示框…...

【Linux学习笔记】进程概念(中)

1. 操作系统的进程状态2. Linux操作系统的进程状态3. 僵尸进程4. 孤儿进程5. 进程优先级5.1. 优先级是什么和为什么要有优先级5.2. Linux中的进程优先级 6. 进程切换7. 环境变量7.1. 环境变量的认识7.2. 环境变量相关的命令7.3. 环境变量和本地变量7.4. 命令行参数7.5. 获取环境…...

scanpy赋值问题

今天发现一个很奇怪的bug import numpy as np import pandas as pd import anndata as ad from scipy.sparse import csr_matrix print(ad.__version__)counts csr_matrix(np.random.poisson(1, size(100, 2000)), dtypenp.float32) adata1 ad.AnnData(counts) print(adata1)…...

腾讯云域名备案后,如何解析到华为云服务器Linux宝塔面板

一、购买域名并且进行备案和解析&#xff0c;正常情况下&#xff0c;购买完域名&#xff0c;如果找不到去哪备案&#xff0c;可以在腾讯云上搜索“备案”关键词就会出现了&#xff0c;所以这里不做详细介绍&#xff0c;直接进行步骤提示&#xff1a; 二、申请ssl证书&#xff0…...

odoo 按钮打印pdf报表

odoo打印一般是在动作里面进行的 所以此方法可用自定义按钮进行打印 <template id"report_sale_line_packing_template"> xxx </template><template id"report_sale_line_packing"><t t-call"web.basic_layout"><t …...

用逻辑分析仪观察串口Uart数据波形

一、概述 只讨论嵌入式编程中较为常用的异步串行接口&#xff08;Universal Asynchronous Receiver/Transmitter&#xff0c; UART&#xff09;&#xff0c;TTL电平。 串口的参数一般有&#xff1a; 1.波特率&#xff0c;数据传输速率&#xff0c;单位bps&#xff08;bits per…...

数据结构-栈应用括号匹配

1、顺序栈的定义 2、顺序栈的入栈&#xff0c;出栈&#xff0c;取出栈顶元素&#xff0c;匹配判断函数 3、顺序栈的运行测试 4、实现代码 #include<iostream> using namespace std; #define OK 1 #define ERROR 0 #define OVERFLOW -2 typedef int Status; #define M…...

leetcode做题笔记209. 长度最小的子数组

给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] &#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0 。 示例 1&#xff1a; 输入&#…...

【机器学习】几种常用的机器学习调参方法

在机器学习中&#xff0c;模型的性能往往受到模型的超参数、数据的质量、特征选择等因素影响。其中&#xff0c;模型的超参数调整是模型优化中最重要的环节之一。超参数&#xff08;Hyperparameters&#xff09;在机器学习算法中需要人为设定&#xff0c;它们不能直接从训练数据…...

使用免费 FlaskAPI 部署 YOLOv8

目标检测和实例分割是计算机视觉中关键的任务&#xff0c;使计算机能够在图像和视频中识别和定位物体。YOLOv8是一种先进的、实时的目标检测系统&#xff0c;因其速度和准确性而备受欢迎。 Flask是一个轻量级的Python Web框架&#xff0c;简化了Web应用程序的开发。通过结合Fla…...

不使用屏幕在树莓派4B安装Ubuntu22.04桌面版(64位)

因为时间有限只说一下基本路径&#xff1a; 1首先安装Ubuntu22.04server版本 2设置服务器版本的SSH和WiFi 3通过服务器版本安装Ubuntu-desktop升级到Ubuntu22.04桌面版 4在桌面版上安装远程控制软件&#xff1a;xrdp; 5使用Windows自带的远程桌面连接访问Ubuntu 6完成...

Pymysql模块使用操作

一、pymysql模块安装 二、测试数据库连接 测试数据库连接.py from pymysql import Connectioncon None try:# 创建数据库连接con Connection(host"localhost",port3306,user"root",password"XXXXX")# 测试链接print(con.get_host_info())print…...

8+双疾病+WGCNA+多机器学习筛选疾病的共同靶点并验证表达

今天给同学们分享一篇双疾病WGCNA多机器学习的生信文章“Shared diagnostic genes and potential mechanism between PCOS and recurrent implantation failure revealed by integrated transcriptomic analysis and machine learning”&#xff0c;这篇文章于2023年5月16日发表…...

springboot如何获取前端请求头的值并加入ThreadLocal

依赖&#xff1a; <dependency><groupId>org.aspectj</groupId><artifactId>aspectjweaver</artifactId><version>1.9.7</version> </dependency>示例&#xff1a; public class ThreadLocalUtil {private static ThreadLoc…...

程序员想要网上接单却看花了眼?那这几个平台你可得收藏好了!

现在经济压力这么大&#xff0c;但是生活成本还在上升&#xff0c;相信大家都知道“四脚吞金兽”的威力了吧&#xff01;话虽如此&#xff0c;但是生活总得继续&#xff0c;为了家庭的和谐幸福&#xff0c;为了孩子的未来&#xff0c;不少人选择多干几份工作&#xff0c;赚点外…...

前端食堂技术周刊第 102 期:Next.js 14、Yarn 4.0、State of HTML、SEO 从 0 到 1

美味值&#xff1a;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f;&#x1f31f; 口味&#xff1a;肥牛宽粉 食堂技术周刊仓库地址&#xff1a;https://github.com/Geekhyt/weekly 大家好&#xff0c;我是童欧巴。欢迎来到前端食堂技术周刊&#xff0c;我们先来看下…...

GPT与人类共生:解析AI助手的兴起

随着GPT模型的崭新应用&#xff0c;如百度的​1​和CSDN的​2​&#xff0c;以及AI助手的普及&#xff0c;人们开始讨论AI对就业市场和互联网公司的潜在影响。本文将探讨GPT和AI助手的共生关系&#xff0c;以及我们如何使用它们&#xff0c;以及使用的平台和动机。 GPT和AI助手…...

HTML脚本、字符实体、URL

HTML脚本&#xff1a; JavaScript 使 HTML 页面具有更强的动态和交互性。 <script> 标签用于定义客户端脚本&#xff0c;比如 JavaScript。<script> 元素既可包含脚本语句&#xff0c;也可通过 src 属性指向外部脚本文件。 JavaScript 最常用于图片操作、表单验…...

UOS安装Jenkins

一&#xff0c;环境准备 1.安装jdk 直接使用命令行&#xff08;sudo apt install -y openjdk-11-jdk&#xff09;安装jdk11 2.安装maven 参考此篇文章即可 UOS安装并配置Maven工具_uos 安装maven_蓝天下的一员的博客-CSDN博客 不过要注意这篇文章有个小错误&#xff0c;我…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...