机器学习快速入门教程 Scikit-Learn实现
机器学习是什么?
机器学习是一帮计算机科学家想让计算机像人一样思考所研发出来的计算机理论。他们曾经说过,人和计算机其实本没有差别,同样都是一大批互相连接的信息传递和存储元素所组成的系统。所以有了这样的想法,加上他们得天独厚的数学功底,机器学习的前身也就孕育而生了。
机器学习的萌芽诞生于19世纪60年代,20年前开始逐渐兴起。它是一门跨学科的交融,这里面包含了概率论、统计学等等学科。随着计算机硬件的提升,计算机运算速度的不断提高,它真正开始进入我们的日常生活当中。而在不久的将来,我相信它也会成为我们生活中必不可少的组成元素。
我们说说日常生活中的机器学习应用。第一个提到的,最具代表性的公司应该就是Google。他所开发的Google Now, google photos都是基于机器学习的产物。同样在百度,图片识别也是应用到机器学习中的视觉处理系统。于此同时,各种各样的企业都开始尝试把自己的产品往机器学习上靠拢,比如金融公司的汇率预测,股票涨跌;房地产公司的房价预测等等。
机器学习不仅仅只有一种方法,实现它的方法多种多样。这里所说的方法,在程序语言中,我们叫做算法。目前所有的机器学习算法大概可以被分为4到5类。
如果在学习过程中,我们不断的向计算机提供数据和这些数据所对应的值,比如说给计算机看猫和狗的图片,告诉计算机哪些图片里的是猫,哪些是狗,然后让它学习去分辨猫和狗,通过这种指引的方式,让计算机学习我们是如何把这些图片数据对应上图片所代表的物体,也就是让计算机学习这些标签可以代表那些图片,这种方式就叫做“监督学习(supervised learning)”。预测房屋的价格,股票的涨停同样可以用监督学习来实现。大家所熟知的神经网络同样是一种监督学习的方式。
如果同样在这种学习过程中,我只给计算机提供猫和狗的图片,但是并没有告诉它哪些是猫,哪些是狗,取而代之的是,我让它自己去判断和分类,让它自己总结出这两种类型的图片的不同之处,这就是一种“非监督学习(un-supervised learning)”。在这一种学习过程中,我们可以不用提供数据所对应的标签信息,计算机通过观察各种数据之间的特性,会发现这些特性背后的规律,这些规律也就是非监督方法所学到的东西。
还有一种方法综合了监督学习和非监督学习的特征,这种叫作“半监督学习(Semi-Supervised Learning)”。它主要考虑如何利用少量有标签的样本和大量的没有标签样本进行训练和分类。
在规划机器人的行为准则方面,一种机器学习方法叫作“强化学习(reinforcement learning)”,也就是把计算机丢到了一个对于它完全陌生的环境或者让它完成一项从未接触过的任务,它自己会去尝试各种手段,最后让自己成功适应这一个陌生的环境,或者学会完成这件任务的方法途径。比如说我想训练机器人去投篮,我要只需要给它一个球,并告诉它你投进了我给你记一分,让它自己去尝试各种各样的投篮方法。在开始阶段,它的命中率可能会非常低,不过它会像人类一样自己总结和学习投篮失败或成功的经验,最后达到很高的命中率。Google 开发的 AlphaGo 也就是应用了之一种学习方式。
还有一种和强化学习类似的学习方法,叫做遗传算法(genetic algorithm)。这一种方法是模拟我们熟知的进化理论,淘汰弱者,适者生存。通过这样的淘汰机制去选择最优的设计或模型。比如这位开发者所开发的计算机学会玩超级玛丽。最开始的马里奥1代可能不久就牺牲了,不过系统会基于1代的马里奥随机生成2代的,然后在保存这些代里面最厉害的马里奥,淘汰掉比较弱的马利奥代。然后再次基于强者“繁衍和变异”生出更强的马里奥。这也就是遗传算法的基本思想。
以上就是当今比较重要的机器学习方法,我们再来总结一下:它们包括,有数据和标签的监督学习(supervised learning),只有数据没有标签的非监督学习(unsupervised learning),有结合了监督学习和非监督学习的半监督学习法。还有从经验中总结提升的强化学习(reinforcement learning),最后是和强化学习类似的,有着适者生存,不适者淘汰准则的遗传算法(genetic algorithm)。
总结:
有数据和标签的 监督学习 (supervised learning),
只有数据 没有标签的 非监督学习 (unsupervised learning)
有结合了 监督学习 和非监督学习的 半监督学习法.
还有从经验中总结提升的 强化学习 (reinforcement learning),
最后是和 强化学习类似的, 有着适者生存, 不适者淘汰准则的 遗传算法 (genetic algorithm).
如何选择机器学习方法
选择合适的估计器
解决机器学习问题最难的部分往往是为特定任务找到合适的估计器。不同的估计器更适合不同类型的数据和不同的问题。

这次我们会讲到通用的学习模式或者学习形式。具体来说,Scikit-learn把所有机器学习的模式整合,统一起来了。你懂其中一个学习模式的话,就可以通用所有的学习模式。
今天我们会讲到分类的学习。具体来说,我们会用到Iris的花的例子。这个花会有不同的特性特征。在Scikit-learn当中有一个database,数据库里面有花的练习。花是分了四个属性,比如长,高,近,直,直。这种花有四种类型,我们用classifier去分开这四个类型的花。
首先,我们要用到numpy,然后我们要from sklearn data set。Sklearn有很多的数
相关文章:
机器学习快速入门教程 Scikit-Learn实现
机器学习是什么? 机器学习是一帮计算机科学家想让计算机像人一样思考所研发出来的计算机理论。他们曾经说过,人和计算机其实本没有差别,同样都是一大批互相连接的信息传递和存储元素所组成的系统。所以有了这样的想法,加上他们得天独厚的数学功底,机器学习的前身也就孕育而生…...
【向生活低头】win7打印机共享给win11使用,win11无法连接问题的解决
打印机是跟win7的电脑连接的,然后试了很多方法,win11都没法添加该打印机去使用。 网上的方法乱七八糟啥都有,但试了以后,发现基本没什么用。 刚刚发现知乎上的一个回答是有用的,这里做记录以备后用。 1.打开控制面板的…...
HarmonyOS鸿蒙原生应用开发设计- 元服务(原子化服务)图标
HarmonyOS设计文档中,为大家提供了独特的元服务图标,开发者可以根据需要直接引用。 开发者直接使用官方提供的元服务图标内容,既可以符合HarmonyOS原生应用的开发上架运营规范,又可以防止使用别人的元服务图标侵权意外情况等&…...
rhcsa-vim
命令行的三种模式 将ets下的passwd文件复制到普通用户下面 编辑模式的快捷方式 a--光标后插入 A--行尾插入 o--光标所在上一行插入 O--光标所在上一行插入 i--光标前插入 I--行首插入 s--删除光标所在位然后进行插入模式 S--删除光标所在行然后进行插入 命令模式的快捷…...
Rocky9 上安装 redis-dump 和redis-load 命令
一、安装依赖环境 1、依赖包 dnf -y install perl gcc gcc-c zlib-devel2、编译openssl 1.X ### 下载编译 wget https://www.openssl.org/source/openssl-1.1.1t.tar.gz tar xf openssl-1.1.1t.tar.gz cd openssl-1.1.1t ./config --prefix/usr/local/openssl make make ins…...
Azure机器学习 - 使用与Azure集成的Visual Studio Code实战教程
本文介绍如何启动远程连接到 Azure 机器学习计算实例的 Visual Studio Code。 借助 Azure 机器学习资源的强大功能,使用 VS Code 作为集成开发环境 (IDE)。 在VS Code中将计算实例设置为远程 Jupyter Notebook 服务器。 关注TechLead,分享AI全维度知识。…...
内网渗透-域信息收集
域环境 虚拟机应用:vmware17 域控主机:win2008 2r 域成员主机:win2008 2r win7 一.域用户和本地用户区别 使用本地用户安装程序时,可以直接安装 使用域用户安装程序时,需要输入域控管理员的账号密码才能安装。总结…...
三国志14信息查询小程序(历史武将信息一览)制作更新过程02-基本架构
0,前期准备 (1)一台有公网IP的云服务器,服务器上安装MySQL数据库,启用IIS服务。出入端口号配置运行(服务器和平台都要配置),IIS服务器上安装SSL证书 (2)域名…...
【51单片机】LED与独立按键(学习笔记)
一、点亮一个LED 1、LED介绍 LED:发光二极管 补:电阻读数 102 > 10 00 1k 473 > 47 000 2、Keil的使用 1、新建工程:Project > New Project Ctrl Shift N :新建文件夹 2、选型号:Atmel-AT89C52 3、xxx…...
package.json(2)
发布配置 和npm 项目包发布相关的配置。 private private 字段可以防止我们意外地将私有库发布到 npm 服务器。只需要将该字段设置为 true: "private": true preferGlobal preferGlobal 字段表示当用户不把该模块安装为全局模块时,如果设…...
Docker(2)——Docker镜像的基本命令
目录 一、简介 二、基本命令 1. Docker命令官方文档 2. 展示镜像 3. 搜索镜像 4. 下载镜像 5. 删除镜像 一、简介 本篇文章是Docker专栏的第二章,主要用于介绍Docker镜像的一些基本命令 二、基本命令 1. Docker命令官方文档 本篇博客仅记录常用的Docker镜…...
IT技术发展背景下的就业趋势:哪个领域最受欢迎?
IT技术发展背景下的就业趋势:哪个领域最受欢迎? 随着科技的不断进步和互联网的普及,IT行业正以惊人的速度蓬勃发展。在这个数字化时代,IT技术已经渗透到各个行业和领域中,为人们带来了巨大的便利和机遇。那么…...
日本移动支付Merpay QA团队的自动化现状
Merpay是日本最大的网购平台之一Mercari的无现金支付系统。Merpay 的主要功能是让用户在 Mercari的网站上购物,也可以在日本的许多实体店和餐厅使用它,也可以理解为日本的“支付宝”。以下为Merpay QA 团队在自动化方面的一些思考: 这几年&am…...
EasyExcel复杂表头数据导入
目录 表头示例导入代码数据导出 表头示例 导入代码 Overridepublic void importExcel(InputStream inputStream) {ItemExcelListener itemExcelListener new ItemExcelListener();EasyExcel.read(inputStream, ImportItem.class, itemExcelListener).headRowNumber(2).sheet()…...
【Redis】Redis安装教程基本操作语法
【Redis】Redis安装教程&基本操作语法 一、Redis简介1.1.什么是Redis1.2.Redis与传统数据库的区别主要 二、Linux安装Redis2.1.安装Redis2.2.解压安装包2.3.解压后执行安装gcc2.4.编译Redis2.5.修改Redis为守护进程2.6.启动Redis服务2.7.配置密码且外部连接2.8.重启服务器2…...
spring-boot-autoconfigure.jar/META-INF/spring.factories介绍
spring-boot-autoconfigure.jar/META-INF/spring.factories是Spring Boot自动配置的核心文件,它包含了各种自动配置类的注册信息。这个文件是Spring Boot根据应用程序的依赖关系和配置文件中的条件注解,自动加载和配置所需的Bean的依据。 在spring.fact…...
vue3视频大小适配浏览器窗口大小
目标:按浏览器窗口的大小,平铺视频,来适配屏幕的大小。 考虑使用 DPlayer.js、video.js、vue-video-player等视频插件,但报了各种各样的错;试过使用 js 对视频进行同比例放大,再判断其与窗口的大小取最小值…...
Nignx安装负载均衡动静分离以及Linux前端项目部署将域名映射到特定IP地址
目录 一、nginx简介 1.1 定义 1.2 背景 1.3 作用 二、nginx搭载负载均衡提供前后分离后台接口数据 2.1 nginx安装 2.1.1 下载依赖 2.1.2 下载并解压安装包 2.1.3 安装nginx 2.1.4 启动nginx服务 2.2 tomcat负载均衡 2.2.1 负载均衡所需服务器准备 2.2.2 配置修改 …...
Plist编辑软件 PlistEdit Pro mac中文版功能介绍
PlistEdit Pro mac是一款功能强大的Plist文件编辑软件。Plist文件是苹果公司开发的一种XML文件格式,用于存储应用程序的配置信息和数据。PlistEdit Pro可以帮助用户轻松地编辑和管理Plist文件。 PlistEdit Pro具有直观的用户界面和丰富的功能。用户可以使用该软件打…...
CSS3网页布局基础
CSS布局始于第2个版本,CSS 2.1把布局分为3种模型:常规流、浮动、绝对定位。CSS 3推出更多布局方案:多列布局、弹性盒、模板层、网格定位、网格层、浮动盒等。本章重点介绍CSS 2.1标准的3种布局模型,它们获得所有浏览器的全面、一致…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
ArcGIS Pro+ArcGIS给你的地图加上北回归线!
今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等,设置经线、纬线都以10间隔显示。 2、需要插入背会归线…...
UE5 音效系统
一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类,将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix,将上述三个类翻入其中,通过它管理每个音乐…...
