当前位置: 首页 > news >正文

多模态论文阅读之VLMo

VLMo泛读

  • Title
  • Motivation
  • Contribution
  • Model
  • Expertiments
  • Summary

Title

VLMo:Unified Vision_Langugae Pre-Training with Mixture-of-Modality-Experts

Motivation

  1. CLIP和ALIGN都采用dual-encoder的方式分别编码图像和文本,模态之间的交互采用cosine similarity ,这种方法对retrieval tasks(检索任务)及其有效;但是如此shallow intersection between images and text is not enough to handle complex VL classfication tasks. In ViLT, find that CLIP gives a relatively low accuracy on visual resaoning(VR) task; 后来一系列的tasks,采用的fusion encoder 的方式,即一开始分来images and text 然后采用transformer的encoder 做cross-modal 的intersection,这样的architecture 弥补了dual encoder architecture的drawback,But it requires to jointly encode all possible image-text pairs to compute similarity scores for retrieval tasks. The quadratic time complexity leads to a much slower inference speed than the dual-encoder models models whos time complexity is linear. So, 有没**有一种融合上述两种架构的方法呢?**做检索任务的时候用 dual-encoder架构,做classfication的时候用fusion encoder,所以本文提出了Mixture-of-Modality-Experts
  2. VLMo的训练loss是image-text contrastive(ITC), image-text matching(ITM), masked Language modeling(MLM)和ALBEF是一样的。提出了一个stagewise的预训练方法分别vision 和NLP中的large-scale corpus:首先在vision上训练好,再预训练language experts on text-only data,最后将模型用于vision-language pre-training。

Contribution

  1. 模型上的改进:Mixture-of-Modality-Experts
  2. 训练方式上的改进:分阶段模型预训练

Model

overview of the model

  1. 模型中所有的multi-head self-Attention都是share weights的
  2. 模型inference的时候很灵活,要做那个任务,切换到那个架构上就行。
  3. 分阶段训练策略
    stagewise pre-training

Expertiments

  1. 比ALBEF性能好很多
  2. 在更大的数据集上训练,数据变得更好。

Summary

  1. 就是把transformer里的encoder中的FFN分为了几个FFN

相关文章:

多模态论文阅读之VLMo

VLMo泛读 TitleMotivationContributionModelExpertimentsSummary Title VLMo:Unified Vision_Langugae Pre-Training with Mixture-of-Modality-Experts Motivation CLIP和ALIGN都采用dual-encoder的方式分别编码图像和文本,模态之间的交互采用cosine similarity…...

休闲类手游还有机会吗?两大策略收割全球玩家

刚刚过去的第三季度,是全球手游市场逆势增长的高光时刻。 买量、营收、下载等多项数据表现优异,其中买量最为突出的产品是休闲类游戏,广告主数占比23.76%断层第一,广告素材占比17.62%,是当之无愧的“广告顶流”。 数…...

Git复制代码

目录 一、常用下载代码 1.登录Git克隆SSH​编辑 2.新建文件然后右键点击Git Bash Here 3.git clone Paste 二. 本地下载 1.从本地进入页面 2.生成代码——>导入——>生成代码后下载 3.解压道相应位置 一、常用下载代码 1.登录Git克隆SSH 2.新建文件然后右键点击…...

数据结构笔记——查找、排序(王道408)

文章目录 查找基本概念线性表查找顺序查找折半查找(二分)分块查找 树查找二叉排序树(BST)平衡二叉树(AVL)的插入平衡化复杂度分析 平衡二叉树的删除 红黑树红黑树的定义和性质红黑树定义红黑树性质 红黑树的…...

MySQL---搜索引擎

MySQL的存储引擎是什么 MySQL当中数据用各种不同的技术存储在文件中,每一种技术都使用不同的存储机制,索引技巧 锁定水平,以及最终提供的不同的功能和能力,这些就是我们说的存储引擎。 MySQL存储引擎的功能 1.MySQL将数据存储在文…...

2022最新版-李宏毅机器学习深度学习课程-P32 Transformer

一、 seq2seq 1. 含义 输入一个序列,机器输出另一个序列,输出序列长度由机器决定。 文本翻译:文本至文本;  语音识别:语音至文本;  语音合成:文本至语音;  聊天机器人&#…...

如何使用商品详情API接口获取商品数据:一篇详尽的论述

一、引言 商品详情API接口是一种用于获取商品详细信息的应用程序接口。通过调用该接口,我们可以获取商品的名称、价格、描述、图片以及其他相关属性。对于电商平台、价格比较网站、数据分析等应用场景来说,商品详情API接口提供了便捷的数据获取方式。本…...

华为:手机王者归来,汽车起死回生

作为一家全球知名的科技公司,华为在通信、智能手机、平板电脑等领域拥有很高的市场份额和品牌影响力。而随着华为开始进军汽车领域,通过自主研发和合作,不断提升自己在汽车领域的竞争力,华为便也开始受到更为广泛的关注。 只不过…...

Vue3.0 provide与inject依赖注入:VCA

简介 provide 与 inject 是一种跨层级组件(祖孙)通信方式。当组件多层嵌套时,不需要将数据一层一层的向下传递,通过它俩可以实现跨层级组件通信。 provide:提供者 注入一个值,可以被后代组件接收。 prov…...

前端react入门day02-React中的事件绑定与组件

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 React中的事件绑定 React 基础事件绑定 使用事件对象参数 传递自定义参数 同时传递事件对象和自定义参…...

工业5G路由器;小体积 千兆高速通信组网

计讯物联工业路由器TR232,5G高速网络,超低时延、高可靠性,小体积、易安装、强兼容,串口/网口多设备接入联网,为用户提供高速稳定的数据传输通道 。    小体积5G工业路由器TR323,外形1047824mm&#xff0…...

【深度学习基础】从R-CNN到Fast R-CNN,再到MaskR-CNN,发展历程讲清楚!

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...

面试算法51:节点值之和最大的路径

题目 在二叉树中将路径定义为顺着节点之间的连接从任意一个节点开始到达任意一个节点所经过的所有节点。路径中至少包含一个节点,不一定经过二叉树的根节点,也不一定经过叶节点。给定非空的一棵二叉树,请求出二叉树所有路径上节点值之和的最…...

阿里云 k8s 容器服务 设置节点为不可调度的两种方法有什么区别?

两种方法的区别在于:drain 会驱逐原来节点上的所有 pod,而 cordon 只是停止调度, 禁止新的 pod 调度进来,但旧的 pod 不会受影响。...

新一代数据质量平台datavines

在我实习的第一家公司的时候,有幸参与Apache Griffin的开发,也先后在一起其他公司使用过数据质量平台,同时也调研过一些开源的数据质量平台。 最近和朋友一起参与开发了datavines数据质量平台,随着在数据行业越呆越久&#xff0c…...

建议收藏《2023华为海思实习笔试-数字芯片真题+解析》(附下载)

华为海思一直以来是从业者想要进入的热门公司。但是岗位就那么多,在面试的时候,很多同学因为准备不充分,与岗位失之交臂,无缘进入该公司。今天为大家带来《2023华为海思实习笔试-数字芯片真题解析》题目来源于众多网友对笔试的记录…...

【详细教程】关于如何使用GitGitHub的基本操作汇总GitHub的密钥配置 ->(个人学习记录笔记)

文章目录 1. Git使用篇1.1 下载安装Git1.2 使用Git 2. GitHub使用篇2.1 如何git与GitHub建立联系呢?2.2 配置公钥 1. Git使用篇 1.1 下载安装Git 点击 官网链接 后,进入Git官网,下载安装包 然后根据系统类型进行下载,一般为wind…...

HTML样式CSS、图像

HTML样式-CSS: CSS (Cascading Style Sheets) 用于渲染HTML元素标签的样式。CSS可以通过以下方式添加到HTML中&#xff1a;1&#xff09;、内联方式&#xff1a;在HTML元素中使用“style”属性&#xff1b;2&#xff09;、内部样式表&#xff1a;在HTML文档头部<head>区…...

智能电表瞬时电量是什么意思?

智能电表已经成为我们进行能源管理的重要工具。其中&#xff0c;瞬时电量这一概念逐渐走进大众视野。那么&#xff0c;智能电表瞬时电量究竟是什么意思&#xff1f;它对我们的生活和能源管理又有哪些影响呢&#xff1f;下面&#xff0c;小编就来为大家介绍一下瞬时电量&#xf…...

Redis之 redis.config配置文件

文章目录 前言一、基本配置1.单位2.包含3.网络配置4.通用5.快照6.安全7.限制8.仅追加模式 二、总体主要介绍总结 前言 行家一出手&#xff0c;就知有没有&#xff0c;让一起学习redis.config配置文件。 一、基本配置 Redis 的配置文件位于 Redis 安装目录下&#xff0c;文件名…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...