0基础学习PyFlink——使用datagen生成流式数据
大纲
- 可控参数
- 字段级规则
- 生成方式
- 数值控制
- 时间戳控制
- 表级规则
- 生成速度
- 生成总量
- 结构
- 生成环境
- 定义行结构
- 定义表信息
- 案例
- 随机Int型
- 顺序Int型
- 随机型Int数组
- 带时间戳的多列数据
- 完整代码
- 参考资料
在研究Flink的水位线(WaterMark)技术之前,我们可能需要Flink接收到流式数据,比如接入Kafka等。这就要求引入其他组件,增加了学习的难度。而Flink自身提供了datagen连接器,它可以用于生成流式数据,让问题内聚在Flink代码内部,从而降低学习探索的难度。
本节我们就介绍如何使用datagen生成数据。
可控参数
我们可以使用option方法控制生成的一些规则,主要分为“字段级规则”和“表级规则”。
字段级规则
顾名思义,字段级规则是指该规则作用于具体哪个字段,这就需要指明字段的名称——fields.col_name。
生成方式
字段的生成方式由下面的字符串形式来控制(#表示字段的名称,下同)
fields.#.kind
可选值有:
- random:随机方式,比如5,2,1,4,6……。
- sequence:顺序方式,比如1,2,3,4,5,6……。
数值控制
如果kind是sequence,则数值控制使用:
- fields.#.start:区间的起始值。
- fields.#.end:区间的结束值。
如果配置了这个两个参数,则会生成有限个数的数据。
如果kind是random,则数值控制使用:
- fields.#.min:随机算法会选取的最小值。
- fields.#.max:随机算法会选取的最大值。
时间戳控制
fields.#.max-past仅仅可以用于TIMESTAMP和TIMESTAMP_LTZ类型的数据。它表示离现在时间戳最大的时间差,这个默认值是0。TIMESTAMP和TIMESTAMP_LTZ只支持random模式生成,这就需要控制随机值的区间。如果区间太小,我们生成的时间可能非常集中。后面我们会做相关测试。
表级规则
生成速度
rows-per-second表示每秒可以生成几条数据。
生成总量
number-of-rows表示一共可以生成多少条数据。如果这个参数不设置,则表示可以生成无界流。
结构
生成环境
我们需要流式环境,而datagen是Table API的连接器,于是使用流式执行环境创建一个流式表环境。
stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)
定义行结构
schame = Schema.new_builder().column('seed', DataTypes.INT()).build()
这个结构以及支持的生成模式是:
| Type | Supported Generators |
|---|---|
| BOOLEAN | random |
| CHAR | random / sequence |
| VARCHAR | random / sequence |
| BINARY | random / sequence |
| VARBINARY | random / sequence |
| STRING | random / sequence |
| DECIMAL | random / sequence |
| TINYINT | random / sequence |
| SMALLINT | random / sequence |
| INT | random / sequence |
| BIGINT | random / sequence |
| FLOAT | random / sequence |
| DOUBLE | random / sequence |
| DATE | random |
| TIME | random |
| TIMESTAMP | random |
| TIMESTAMP_LTZ | random |
| INTERVAL YEAR TO MONTH | random |
| INTERVAL DAY TO MONTH | random |
| ROW | random |
| ARRAY | random |
| MAP | random |
| MULTISET | random |
定义表信息
下面这个例子就是给seed字段按随机模式,生成seed_min和seed_max之间的数值,并且每秒生成rows_per_second行。
table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()
案例
随机Int型
每秒生成5行数据,每行数据中seed字段值随机在最小值0和最大值100之间。由于没有指定number-of-rows,生成的是无界流。
def gen_random_int():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()
+----+-------------+
| op | seed |
+----+-------------+
| +I | 25 |
| +I | 28 |
| +I | 73 |
| +I | 68 |
| +I | 40 |
| +I | 55 |
| +I | 6 |
| +I | 41 |
| +I | 16 |
| +I | 19 |
……
顺序Int型
每秒生成5行数据,每行数据中seed字段值从1开始递增,一直自增到10。由于设置了最大和最小值,生成的是有界流。
def gen_sequence_int():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 1seed_max = 10rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'sequence') \.option('fields.seed.start', str(seed_min)) \.option('fields.seed.end', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()
+----+-------------+
| op | seed |
+----+-------------+
| +I | 1 |
| +I | 2 |
| +I | 3 |
| +I | 4 |
| +I | 5 |
| +I | 6 |
| +I | 7 |
| +I | 8 |
| +I | 9 |
| +I | 10 |
+----+-------------+
10 rows in set
随机型Int数组
每秒生成5行数据,每行数据中seed字段是一个Int型数组,数组里面的每个元素也是随机的。
def gen_random_int_array():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.ARRAY(DataTypes.INT())) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()
+----+--------------------------------+
| op | seed |
+----+--------------------------------+
| +I | [625785630, -933999461, -48... |
| +I | [2087310154, 1602723641, 19... |
| +I | [1299442620, -613376781, -8... |
| +I | [2051511574, 246258035, -16... |
| +I | [2029482070, -1496468635, -... |
| +I | [1230213175, -1506525784, 7... |
| +I | [501476712, 1901967363, -56... |
……
带时间戳的多列数据
每秒生成5行数据,每行数据中seed字段值随机在最小值0和最大值100之间;timestamp字段随机在当前时间戳和“当前时间戳+max-past”之间。
def gen_random_int_and_timestamp():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()) \.column('timestamp', DataTypes.TIMESTAMP()) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('fields.timestamp.kind', 'random') \.option('fields.timestamp.max-past', '0') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()
由于max-past值为0,所以我们看到上例中每秒生成的timestamp 都极接近。
+----+-------------+----------------------------+
| op | seed | timestamp |
+----+-------------+----------------------------+
| +I | 66 | 2023-11-02 13:53:29.082000 |
| +I | 9 | 2023-11-02 13:53:29.146000 |
| +I | 12 | 2023-11-02 13:53:29.146000 |
| +I | 52 | 2023-11-02 13:53:29.146000 |
| +I | 29 | 2023-11-02 13:53:29.146000 |
| +I | 63 | 2023-11-02 13:53:30.066000 |
| +I | 25 | 2023-11-02 13:53:30.066000 |
| +I | 21 | 2023-11-02 13:53:30.066000 |
| +I | 24 | 2023-11-02 13:53:30.066000 |
| +I | 6 | 2023-11-02 13:53:30.066000 |
| +I | 62 | 2023-11-02 13:53:31.067000 |
| +I | 57 | 2023-11-02 13:53:31.067000 |
| +I | 44 | 2023-11-02 13:53:31.067000 |
| +I | 6 | 2023-11-02 13:53:31.067000 |
| +I | 16 | 2023-11-02 13:53:31.067000 |
……
如果我们把max-past放大到比较大的数值,timestamp也将大幅度变化。
.option('fields.timestamp.max-past', '10000')
+----+-------------+----------------------------+
| op | seed | timestamp |
+----+-------------+----------------------------+
| +I | 89 | 2023-11-02 13:57:17.342000 |
| +I | 35 | 2023-11-02 13:57:10.915000 |
| +I | 32 | 2023-11-02 13:57:11.045000 |
| +I | 74 | 2023-11-02 13:57:18.407000 |
| +I | 24 | 2023-11-02 13:57:13.603000 |
| +I | 82 | 2023-11-02 13:57:12.139000 |
| +I | 41 | 2023-11-02 13:57:16.129000 |
| +I | 95 | 2023-11-02 13:57:16.592000 |
| +I | 80 | 2023-11-02 13:57:14.364000 |
| +I | 60 | 2023-11-02 13:57:18.994000 |
| +I | 56 | 2023-11-02 13:57:19.330000 |
| +I | 10 | 2023-11-02 13:57:18.876000 |
| +I | 43 | 2023-11-02 13:57:12.449000 |
| +I | 73 | 2023-11-02 13:57:13.183000 |
| +I | 17 | 2023-11-02 13:57:18.736000 |
| +I | 46 | 2023-11-02 13:57:21.368000 |
……
完整代码
from pyflink.datastream import StreamExecutionEnvironment,RuntimeExecutionMode
from pyflink.table import StreamTableEnvironment, TableDescriptor, Schema, DataTypesdef gen_random_int():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_sequence_int():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 1seed_max = 10rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'sequence') \.option('fields.seed.start', str(seed_min)) \.option('fields.seed.end', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_sequence_string():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.STRING()).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'sequence') \.option('fields.seed.start', str(seed_min)) \.option('fields.seed.end', str(seed_max)) \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_char():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.CHAR(4)).build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_int_and_timestamp():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)seed_min = 0seed_max = 100rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.INT()) \.column('timestamp', DataTypes.TIMESTAMP()) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('fields.seed.min', str(seed_min)) \.option('fields.seed.max', str(seed_max)) \.option('fields.timestamp.kind', 'random') \.option('fields.timestamp.max-past', '10000') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_int_array():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.ARRAY(DataTypes.INT())) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_map():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.MAP(DataTypes.STRING(), DataTypes.INT())) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_multiset():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.MULTISET(DataTypes.STRING())) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()def gen_random_row():stream_execute_env = StreamExecutionEnvironment.get_execution_environment()stream_execute_env.set_runtime_mode(RuntimeExecutionMode.STREAMING)stream_table_env = StreamTableEnvironment.create(stream_execution_environment=stream_execute_env)rows_per_second = 5schame = Schema.new_builder().column('seed', DataTypes.ROW([DataTypes.FIELD("id", DataTypes.BIGINT()), DataTypes.FIELD("data", DataTypes.STRING())])) \.build()table_descriptor = TableDescriptor.for_connector('datagen') \.schema(schame) \.option('fields.seed.kind', 'random') \.option('rows-per-second', str(rows_per_second)) \.build()stream_table_env.create_temporary_table('source', table_descriptor)table = stream_table_env.from_path('source')table.execute().print()if __name__ == '__main__':gen_random_int_and_timestamp()
参考资料
- https://nightlies.apache.org/flink/flink-docs-release-1.19/docs/connectors/table/datagen/
相关文章:
0基础学习PyFlink——使用datagen生成流式数据
大纲 可控参数字段级规则生成方式数值控制时间戳控制 表级规则生成速度生成总量 结构生成环境定义行结构定义表信息 案例随机Int型顺序Int型随机型Int数组带时间戳的多列数据 完整代码参考资料 在研究Flink的水位线(WaterMark)技术之前,我们可…...
vue使用Web Speech API实现语音播报
SpeechSynthesisUtterance对象用于表示要播放的语音内容,SpeechSynthesis对象则用于控制语音的播放、暂停、停止等操作。 const synth window.speechSynthesis const msg new SpeechSynthesisUtterance() // 语音播放 const playVoice (text) > {synth.canc…...
MVC5_Day1(Razor视图引擎)
MVC提供了两种不同的视图引擎:Razor视图引擎、Web Forms视图引擎。 1.代码表达式 1.1 转换字符:核心转换字符,用作标记<>代码之间相互转换的字符。 1.2 两种基本转换:代码表达式、代码块。都是求出值,再写入响…...
超全整理,Jmeter性能测试-脚本error报错排查/分布式压测(详全)
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 性能脚本error报错…...
vscode开启emmet语法
需要在setting.json中添加配置 首先进入设置,然后点击右上角 Vue项目添加如下配置 "emmet.syntaxProfiles": { "vue-html": "html", "vue": "html" },React项目添加如下配置 "emmet.includeLanguages&quo…...
07、vue : 无法加载文件 C:\Users\JH\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。
目录 问题解决: 问题 vue : 无法加载文件 C:\Users\JH\AppData\Roaming\npm\vue.ps1,因为在此系统上禁止运行脚本。 在使用 VSCode 时,创建 Vue 项目报的错 创建不了 Vue 项目 解决: 因为在此系统上禁止运行该脚本࿰…...
利用移动互联、物联网、智能算法、地理信息系统、大数据分析等信息技术开发的智慧工地云平台源码
智慧工地是指利用移动互联、物联网、智能算法、地理信息系统、大数据挖掘分析等信息技术,提高项目现场的“人•机•料•法•环•安”等施工要素信息化管理水平,实现工程施工可视化智能管理,并逐步实现绿色生态建造。 技术架构:微…...
海康多相机同步取流保存图片
话不多说,直接上代码。代码里包含了多窗口显示图像和保存图片。 #"rtsp://admin:123456qq192.168.10.192/stream1" # rtsp://admin:Admin123192.168.100.103:554/Streaming/Channels/101 #rtsp://admin:Admin123192.168.100.103:554/cam/realmonitor?ch…...
win10 + vs2017 + cmake3.17编译OSG-3.4.1
参考教程:https://blog.csdn.net/bailang_zhizun/article/details/120992244 1. 下载与解压 2. 修改configure 1)Ungrouped Entries -- 》ACTUAL_3RDPARTY_DIR: 设置为: D:/Depend_3rd_party/OSG341/3rdParty 2) Ungrouped E…...
Excel VBA开发基本语句说明
前言 VBA(Visual Basic for Applications)是一种用于编写宏的编程语言,它广泛应用于Microsoft Office套件中的各种应用程序,如Excel、Word、Access和PowerPoint等。在这些应用程序中,VBA可用于自动化任务、定制功能、…...
应用在智能空调中的数字温度传感芯片
智能空调是具有自动调节功能的空调。智能空调系统能根据外界气候条件,按照预先设定的指标对温度、湿度、空气清洁度传感器所传来的信号进行分析、判断、及时自动打开制冷、加热、去湿及空气净化等功能的空调。适合放在卧室,客厅等地方。 在中央控制系统…...
Qt界面美化之Qt Style Sheets
Qt style sheet 简称QSS style sheet可以在代码中单独对某个控件使用,例如: labelLEDLIN new QLabel("",this); labelLEDLIN->setFixedSize(36,36); labelLEDLIN->setStyleSheet("background-color:red;border-radius:18px;colo…...
prometheus监控告警部署(k8s内部)
一、部署prometheus 先来说明一下需要用到的组件,需要使用pv、pvc存放prometheus的数据,使用pvc存放数据即使pod挂了删除重建也不会丢失数据,使用configmap挂载prometheus的配置文件和告警规则文件,使用service开放对外访问prometheus服务的端…...
数字孪生特高压电网三维可视化平台实现能源智能管理
电力是现代社会不可或缺的基础能源,而有效管理电力资源对于实现可持续发展至关重要。近年来,随着物联网、大数据、人工智能等技术的快速发展,电网领域的数字化转型已经成为一种趋势。而其中关键的一环便是电网三维数字孪生技术,它…...
12.JavaScript(WebAPI) - JS api文献精解
文章目录 1.WebAPI 背景知识1.1什么是 WebAPI1.2什么是 API1.3API 参考文档 2.DOM 基本概念2.1什么是 DOM2.2DOM 树 3.获取元素3.1querySelector3.2querySelectorAll 4.事件初识4.1基本概念4.2事件三要素4.3简单示例 5.操作元素5.1获取/修改元素内容5.1.1innerText5.1.2innerHT…...
亚马逊云科技:让生成式AI真正走向普惠
伴随着ChatGPT的横空出世,生成式AI(Artificial Intelligence Generated Content,也称AIGC)大潮也以锐不可当之势席卷全球。从各行各业的商业领袖,到千千万万的程序员和开发者,都在思考如何借助生成式AI技术…...
Java web(四):JSP
文章目录 一、JSP1.1 概述1.2 JSP入门1.3 JSP脚本1.4 缺点 二、EI表达式三、JSTL3.1 标签3.2 JSTL使用3.3 代码演示 四、MVC模式和三层架构五、项目实战【完成增删改查】 一、JSP 1.1 概述 JSP(全称:Java Server Pages):Java 服…...
HarmonyOS(二)—— 初识ArkTS开发语言(中)之ArkTS的由来和演进
前言 在上一篇文章HarmonyOS(二)—— 初识ArkTS开发语言(上)之TypeScript入门,我初识了TypeScript相关知识点,也知道ArkTS是华为基于TypeScript发展演化而来。 从最初的基础的逻辑交互能力,到…...
电子产品上架Temu平台需要做什么认证?UL测试报告
2022年8月17日报道,TEMU正在筹备跨境电商平台。9月1日,TEMU跨境电商平台正式在海外上线,首站将面向北美市场,该平台命名为TEMU,App Store应用详情页显示意为“Team Up,Price Down”,即买得人越多…...
热点报告 | 健身人群抵抗入冬肥,Dirtyfit引领23秋冬潮流?
您是否曾有以下困惑?打开小红书首页推荐,似乎已经被算法教育成了成熟的信息茧房,想要找到下一个热点,又忧虑一叶以障目;看着搜索框热词,又担心无法掌握热词背后的话题命脉,难以在浮光掠影中寻找…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
