数模国赛——多波束测线问题模型建立研究分析
第一次参加数模国赛,太菜了~~~~意难平
问题一
画出与测线方向垂直的平面和海底坡面的交线构成一条与水平面夹角为𝐀的斜线的情况下的示意图进行分析,将覆盖宽度分为左覆盖宽度和右覆盖宽度,求出它们与海水深度和𝐀、𝐀(复制的原因,没复制对,懒得改了)的关系。根据所列关系式,我们先计算出各个点位的海水深度,再求出覆盖宽度与重叠率,得出在 测线距中心点处的距离-600m 时的海水深度 为85.711553m,覆盖宽度为 297.3525571m,与前一条测线的重叠率为 33.639959%,具体计算结果如表 1 所示。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import math
pi = math.pi
tan1_point5=math.tan(1.5/180*pi)
angle_degrees = 1.5
angle_radians = math.radians(angle_degrees)
tan_value = math.tan(angle_radians)##事先算出 tan1.5 的值
print("tan(1.5 degrees) =", tan_value)
angle_degrees1 = 60
angle_radians1 = math.radians(angle_degrees1)
tan_value1 = math.tan(angle_radians1)##事先算出 tan60 的值
m=200*tan_value
##分别求出海水深度然后合并
value=70
2
ans1=[]
for i in range(1,5):
ans1.append(value-i*m)
ans1.reverse()
ans1.append(70)
ans2=[]
for i in range(1,5):
ans2.append(value+i*m)
D=ans1+ans2
D.reverse()
##计算覆盖宽度 W
w1=[]
w2=[]
W=[]
for i in range(len(D)):
x1=(D[i]*tan_value1)/(1-tan_value1*tan_value)
x2=(D[i]*tan_value1)/(1+tan_value1*tan_value)
w1.append(x1)
w2.append(x2)
W.append(x1+x2)
print(w1)
print(w2)
print(W)
##计算重叠率
x=[-800,-600,-400,-200,0,200,400,600,800]
y1=[]
y2=[]
for i in range(len(W)):
y1.append(x[i]-w1[i])
y2.append(x[i]+w2[i])
print(y1)
print(y2)
chongdie=[]
for i in range(1,len(W)):
chongdie.append((y2[i-1]-y1[i])/(y2[i-1]-y1[i-1]))
print(chongdie)
问题二
clc
clear
3
format long;%设置长小数格式
a=1.5/180*pi;
t=8;
D0=120;
theta=120/180*pi;
d=0.3*1852;%海里转化成米
for nbeta=1:1:t
beta=(nbeta-1)*pi*(360)/t*(t-1)/180/(t-1);
%检查 beta+pi/2 是否是 pi 的倍数
%如果 beta+pi/2 是 pi 的倍数,那么将 k1 设置为 0
%并将 k 设置为 a 的正切值的绝对值。
if mod(beta+pi/2,pi)==0;
k1=0;
k=abs(tan(a));
else
k=abs(tan(a)/sqrt(1+(tan(beta+pi/2))^2));
if 3*pi/2 > beta && pi/2 < beta;
k1=-tan(a)/sqrt(1+(tan(beta))^2);
else
k1=tan(a)/sqrt(1+(tan(beta))^2);
end
end
%深度计算
for n=1:1:t
x=(n-1)*d;
D(nbeta,n)=D0+x*k1;
end
%计算 w
for m=1:1:t
w1(nbeta,m)=D(nbeta,m)*sin(theta/2)/sin(pi/6-atan(k));
w2(nbeta,m)=D(nbeta,m)*sin(theta/2)/sin(pi/6+atan(k));
W(nbeta,m)=(w1(nbeta,m)+w2(nbeta,m))*cos(atan(k));
end
end
问题3
import numpy as np
import math
import geatpy as ea
class MyProblem(ea.Problem):
def __init__(self):
4
name = 'MyProblem'
M = 1
maxormins = [1]
-1:
Dim = 2 )
varTypes = [0] * Dim
lb = [math.pi/2, 0]
ub = [ math.pi, 2*1852]
lbin = [ 0, 0]
ubin = [ 0, 0]
# 调用父类构造方法完成实例化
ea.Problem.__init__(self,
name,
M,
maxormins,
Dim,
varTypes,
lb,
ub,
lbin,
ubin)
def evalVars(self, Vars): # 目标函数
beta= Vars[:, [0]]
f = Vars[:, [1]]
score = 4*1852*1852*2/(-np.cos(beta)*f)
#先把角度转化为弧度
angle_degrees_1 = 1.5
angle_radians_1 = math.radians(angle_degrees_1)
angle_degrees_60 = 60
angle_radians_60 = math.radians(angle_degrees_60)
k=np.arctan(1/(np.sin(beta)*np.tan(angle_radians_1)))
D=[]
for d in range(23,216):
D.append(abs(np.sin(k)*d*np.sin(angle_radians_60)/np.sin(k-angle_radians_60))+abs(np.sin(k)*(d+f*np.si
n(beta)*np.tan(angle_radians_1))*np.sin(angle_radians_60)/np.sin(k+angle_radians_60))
+f*np.cos(beta)-0.2*d*np.sin(angle_radians_60)*(abs(np.sin(k)/np.sin(k+angle_radians_60))+abs(np.sin(k
)/np.sin(k-angle_radians_60))))
D.append(0.1*d*np.sin(angle_radians_60)*(abs(np.sin(k)/np.sin(k+angle_radians_60))+abs(np.sin(k)/np.si
n(k-angle_radians_60))))
5
-abs(np.sin(k)*d*np.sin(angle_radians_60)/np.sin(k-angle_radians_60))+abs(np.sin(k)*(d+f*np.sin(beta)*n
p.tan(angle_radians_1))*np.sin(angle_radians_60)/np.sin(k+angle_radians_60))
+f*np.cos(beta)
CV=np.hstack(D)
return score, CV
if __name__ == '__main__':
# 实例化问题对象
problem = MyProblem()
# 构建算法
algorithm = ea.soea_DE_rand_1_bin_templet(
problem,
ea.Population(Encoding='RI', NIND=100),
MAXGEN=200,
logTras=1)
algorithm.mutOper.F = 0.5
algorithm.recOper.XOVR = 0.7
# 求解
res = ea.optimize(algorithm,
verbose=True,
drawing=1,
outputMsg=True,
drawLog=False,
saveFlag=True)
print(res)
问题4
%读取数据
[X1,X2,X3]=xlsread("C:\Users\JJH\Desktop\CUMCM2023Problems\B 题\附件.xlsx");
x=X1(1,2:end);
y=X1(2:end,1);
z=X1(2:end,2:end);
cha=diff(z,1,2);
he=sum(cha(1,1:end));
average=he/250
[X Y]=meshgrid(x,y);
subplot(3,2,[1 2]);
meshz(X,Y,z);
subplot(3,2,3);
z1=triu(z);
meshz(X,Y,z1)
6
subplot(3,2,4);
z2=triu(z,-50);
meshz(X,Y,z2)
subplot(3,2,5);
z3=tril(z);
meshz(X,Y,z3)
subplot(3,2,6);
z4=tril(z,-50);
meshz(X,Y,z4)
shading interp
相关文章:

数模国赛——多波束测线问题模型建立研究分析
第一次参加数模国赛,太菜了~~~~意难平 问题一 画出与测线方向垂直的平面和海底坡面的交线构成一条与水平面夹角为𝐀的斜线的情况下的示意图进行分析,将覆盖宽度分为左覆盖宽度和右覆盖宽度,求出它们与海水深度和𝐀、…...

[AUTOSAR][诊断管理][ECU][$37] 请求退出传输。终止数据传输的(上传/下载)
文章目录 一、简介二、服务请求报文定义肯定响应支持的NRC三、示例流程Step 1:Step 2:报文示例:Step 1:请求RequestDownload(0x34)服务Step 2:请求TransferData (0x36)服务,传输数据Step 3:请求RequestTransferExit(0x37)服务总结:三、示例代码37_req_transfer_e…...

vue+canvas实现横跨整个页面的动态的波浪线(贝塞尔曲线)
本来写这个特效 我打算用css实现的,结果是一波三折,我太难了,最终没能用css实现,转战了canvas来实现。来吧先看效果图 当然这个图的波浪高度、频率、位置、速度都是可调的,请根据自己的需求调整,如果你讲波浪什么的调大一下 还有有摆动的效果哦。 以下是完整代码 <…...

LeetCode算法题解| 669. 修剪二叉搜索树、108. 将有序数组转换为二叉搜索树、538. 把二叉搜索树转换为累加树
一、LeetCode 669. 修剪二叉搜索树 题目链接:669. 修剪二叉搜索树 题目描述: 给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变…...

直播界很火的无线领夹麦克风快充方案 Type-C接口 PD快充+无线麦克风可同时进行
当前市场上流行一款很火的直播神器,无线领夹麦克风(MIC),应用于网红直播,网课教学,采访录音,视频录制,视频会议等等场景。 麦克风对我们来说并不陌生,而且品类有很多。随…...

Jmeter 汉化中文语言
找到 bin -> jmeter.propertise 修改参数:languageen --> languagazh_CN OK!...

centos9 stream 下 rabbitmq高可用集群搭建及使用
RabbitMQ是一种常用的消息队列系统,可以快速搭建一个高可用的集群环境,以提高系统的弹性和可靠性。下面是搭建RabbitMQ集群的步骤: 基于centos9 stream系统 1. 安装Erlang和RabbitMQ 首先需要在所有节点上安装Erlang和RabbitMQ。建议使用官…...

代码随想录算法训练营第10天|232. 用栈实现队列 225. 用队列实现栈
JAVA代码编写 232. 用栈实现队列 请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty): 实现 MyQueue 类: void push(int x) 将元素 x 推到队列的末尾int pop() 从队列的开头移除…...

线上Kafka集群如何调整消息存储时间
这里是weihubeats,觉得文章不错可以关注公众号小奏技术,文章首发。拒绝营销号,拒绝标题党 Kafka版本 kafka_2.13-3.5.0 背景 Kafka 默认消息存储时间为7天,实际线上的业务使用Kafka更多的是一些数据统计之类的业务,大多是朝生夕…...
[迁移学习]DA-DETR基于信息融合的自适应检测模型
原文标题为:DA-DETR: Domain Adaptive Detection Transformer with Information Fusion;发表于CVPR2023 一、概述 本文所描述的模型基于DETR,DETR网络是一种基于Transformer的目标检测网络,详细原理可以参见往期文章:…...

【MATLAB】全网唯一的13种信号分解+FFT傅里叶频谱变换联合算法全家桶
有意向获取代码,请转文末观看代码获取方式~ 大家吃一顿火锅的价格便可以拥有13种信号分解FFT傅里叶频谱变换联合算法,绝对不亏,知识付费是现今时代的趋势,而且都是我精心制作的教程,有问题可随时反馈~也可单独获取某一…...

Nginx安装与配置
1.下载安装包 官网下载地址:nginx: download 可以先将安装包下载到本地再传到服务器,或者直接用wget命令将安装包下载到服务器,这里我们直接将安装包下载到服务器上。未安装wget命令的需要先安装wget,yum install -y wget [root…...

linux笔记总结-基本命令
参考: 1.Linux 和Windows比 比较 (了解) 1. 记住一句经典的话:在 Linux 世界里,一切皆文件 2. Linux目录结构 /lib • 系统开机所需要最基本的动态连接共享库,其作用类似于Windows里的DLL文件。几 乎所有…...

[PHP]禅道项目管理软件ZenTaoPMS源码包 v16.4
禅道项目管理软件ZenTaoPMS一键安装包是一款国产的开源项目管理软件。它集产品管理、项目管理、质量管理、文档管理、组织管理和事务管理于一体,是一款专业的研发项目管理软件,完整地覆盖了项目管理的核心流程。注重实效的管理思想,合理的软件…...

Required String parameter ‘name‘ is not present
[org.springframework.web.bind.MissingServletRequestParameterException: Required String parameter name is not present] 服务端有参数name,客户端没有传上来...

路由器基础(五): OSPF原理与配置
开放式最短路径优先 (Open Shortest Path First,OSPF) 是一个内部网关协议 (Interior Gateway Protocol,IGP),用于在单一自治系统(Autonomous System,AS) 内决策路由。OSPF 适合小型、中型、较大规模网络。OSPF 采用Dijkstra的最短路径优先算法 (Shortest Pat…...

Leetcode1128. 等价多米诺骨牌对的数量
Every day a Leetcode 题目来源:1128. 等价多米诺骨牌对的数量 解法1:暴力 代码: class Solution { public:int numEquivDominoPairs(vector<vector<int>> &dominoes){int n dominoes.size(), count 0;for (int i 0;…...

Dev-C调试的基本方法2-2
3.3 跳出函数 在图6所示的状态下,点击单步调试(F7)会继续调试下一行,而如果想结束在函数中的调试,则点击图4③所示的跳出函数,或CtrlF8按键跳出f()函数,程序将会停在图5所示的第11行处。 3.4 …...

企业之间的竞争,ISO三体系认证至关重要!
ISO三体系认证是指ISO 9001质量管理体系认证、ISO 14001环境管理体系认证、ISO 45001(OHSAS18001)职业健康安全管理体系认证。企业(组织)自愿申请、通过ISO三体系认证,并贯彻落实,确实能获益多多。 ISO 9001质量管理体系 我们经…...

node教程(四)Mongodb+mongoose
文章目录 一、mongodb1.简介1.1Mongodb是什么?1.2数据库是什么?1.3数据库的作用1.4数据库管理数据的特点 2.核心概念3.下载安装与启动4.命令行交互4.1数据库命令4.3文档命令 二、Mongoose1.介绍2.作用3.使用流程4.插入文档5.mongoose字段类型 一、mongod…...

作为一个初学者,该如何入门大模型?
在生成式 AI 盛行的当下,你是否被这种技术所折服,例如输入一段简简单单的文字,转眼之间,一幅精美的图片,又或者是文笔流畅的文字就展现在你的面前。 相信很多人有这种想法,认为生成式 AI 深不可测…...

编译支持GPU的opencv,并供python的import cv2调用
下载opencv和opencv_contrib,cmake过程中要下载的一些包可以手动下载配置,如果网络较好,也可以等待自动下载。主要记录的是cmake命令: cmake -D CMAKE_BUILD_TYPERELEASE \-D BUILD_opencv_python3YES \-D CMAKE_INSTALL_PREFIX/…...

Bug记录
那些年写过的很小的bug: Bug1: if args.model IRNN or irnn:# some code这实际上不会按你期望的方式工作。原因在于 ‘irnn’ 是一个非空的字符串,因此它在布尔上下文中被视为 True。所以条件总是为真,而不会考虑 args.model 的…...

web3 React dapp中编写balance组件从redux取出并展示用户资产
好啊 上文WEB3 在 React搭建的Dapp中通过redux全局获取并存储用户ETH与自定义token与交易所存储数量中 我们拿到了用户的一个本身 和 交易所token数量 并放进了redux中做了一个全局管理 然后 我们继续 先 起来ganache的一个模拟环境 ganache -d然后 我们启动自己的项目 顺手发…...

BIOS开发笔记 - DDR中的时序参数
通过前一篇文章学习,我们可以大致知道内存条(Module)的组成及SDRAM内部的结构,这一篇再介绍下SDRAM中常见的时序参数以及整个读写操作的流程。 一、外部信号 图1 DDR4的外部线路图 DDR是一种高带宽的传输接口,其外部信号较多,图1是一个DDR4的外部线路图,以下对图中跟通…...

语义分割 - 简介
语义分割是计算机视觉领域的一项重要任务,旨在将图像中的每个像素标记为对应的语义类别。与传统的图像分类任务不同,语义分割不仅要识别整个图像的类别,还需要对图像中的每个像素进行分类,从而实现对图像的像素级别理解。 语义分…...

ch0_OSI 七层网络协议介绍
目录 概述 1、三网融合的概念 三网:电信网络、有线电视网络、计算机网络 概念:把上述三种网络融合成一种网络 2、计算机网络的定义、分类 定义:计算机网络是将地理位置不同的独立计算机系统,通过传输介质链接起来,…...

超声波俱乐部分享:百度世界大会点燃AI创业者新希望
10月22日,2023年第十三期超声波俱乐部内部分享会在北京望京举行。本期的主题是:百度世界大会点燃AI创业者新希望。 到场的嘉宾有:超声波创始人杨子超,超声波联合创始人、和牛商业创始人刘思雨,中国国际经济交流中心研…...

【项目管理】项目计划中常见影响进度的风险汇总
哈喽,大家好,我是雷工。 在项目实施过程中针对项目进度的计划常常会有各种各样的的风险,相比出了问题去救火与填坑,能够提前预知风险,并提前调整计划,更能有利于项目的如期交付。 以下为项目计划中影响进度…...

Apache HttpClient库编写的Scala程序
Apache HttpClient库编写的Scala下载器程序,用于下载图片。代码如下: import org.apache.http.HttpHost import org.apache.http.client.HttpClients import org.apache.http.client.methods.HttpHead import org.apache.http.impl.client.CloseableHtt…...