数模国赛——多波束测线问题模型建立研究分析
第一次参加数模国赛,太菜了~~~~意难平
问题一
画出与测线方向垂直的平面和海底坡面的交线构成一条与水平面夹角为𝐀的斜线的情况下的示意图进行分析,将覆盖宽度分为左覆盖宽度和右覆盖宽度,求出它们与海水深度和𝐀、𝐀(复制的原因,没复制对,懒得改了)的关系。根据所列关系式,我们先计算出各个点位的海水深度,再求出覆盖宽度与重叠率,得出在 测线距中心点处的距离-600m 时的海水深度 为85.711553m,覆盖宽度为 297.3525571m,与前一条测线的重叠率为 33.639959%,具体计算结果如表 1 所示。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import math
pi = math.pi
tan1_point5=math.tan(1.5/180*pi)
angle_degrees = 1.5
angle_radians = math.radians(angle_degrees)
tan_value = math.tan(angle_radians)##事先算出 tan1.5 的值
print("tan(1.5 degrees) =", tan_value)
angle_degrees1 = 60
angle_radians1 = math.radians(angle_degrees1)
tan_value1 = math.tan(angle_radians1)##事先算出 tan60 的值
m=200*tan_value
##分别求出海水深度然后合并
value=70
2
ans1=[]
for i in range(1,5):
ans1.append(value-i*m)
ans1.reverse()
ans1.append(70)
ans2=[]
for i in range(1,5):
ans2.append(value+i*m)
D=ans1+ans2
D.reverse()
##计算覆盖宽度 W
w1=[]
w2=[]
W=[]
for i in range(len(D)):
x1=(D[i]*tan_value1)/(1-tan_value1*tan_value)
x2=(D[i]*tan_value1)/(1+tan_value1*tan_value)
w1.append(x1)
w2.append(x2)
W.append(x1+x2)
print(w1)
print(w2)
print(W)
##计算重叠率
x=[-800,-600,-400,-200,0,200,400,600,800]
y1=[]
y2=[]
for i in range(len(W)):
y1.append(x[i]-w1[i])
y2.append(x[i]+w2[i])
print(y1)
print(y2)
chongdie=[]
for i in range(1,len(W)):
chongdie.append((y2[i-1]-y1[i])/(y2[i-1]-y1[i-1]))
print(chongdie)
问题二


clc
clear
3
format long;%设置长小数格式
a=1.5/180*pi;
t=8;
D0=120;
theta=120/180*pi;
d=0.3*1852;%海里转化成米
for nbeta=1:1:t
beta=(nbeta-1)*pi*(360)/t*(t-1)/180/(t-1);
%检查 beta+pi/2 是否是 pi 的倍数
%如果 beta+pi/2 是 pi 的倍数,那么将 k1 设置为 0
%并将 k 设置为 a 的正切值的绝对值。
if mod(beta+pi/2,pi)==0;
k1=0;
k=abs(tan(a));
else
k=abs(tan(a)/sqrt(1+(tan(beta+pi/2))^2));
if 3*pi/2 > beta && pi/2 < beta;
k1=-tan(a)/sqrt(1+(tan(beta))^2);
else
k1=tan(a)/sqrt(1+(tan(beta))^2);
end
end
%深度计算
for n=1:1:t
x=(n-1)*d;
D(nbeta,n)=D0+x*k1;
end
%计算 w
for m=1:1:t
w1(nbeta,m)=D(nbeta,m)*sin(theta/2)/sin(pi/6-atan(k));
w2(nbeta,m)=D(nbeta,m)*sin(theta/2)/sin(pi/6+atan(k));
W(nbeta,m)=(w1(nbeta,m)+w2(nbeta,m))*cos(atan(k));
end
end
问题3


import numpy as np
import math
import geatpy as ea
class MyProblem(ea.Problem):
def __init__(self):
4
name = 'MyProblem'
M = 1
maxormins = [1]
-1:
Dim = 2 )
varTypes = [0] * Dim
lb = [math.pi/2, 0]
ub = [ math.pi, 2*1852]
lbin = [ 0, 0]
ubin = [ 0, 0]
# 调用父类构造方法完成实例化
ea.Problem.__init__(self,
name,
M,
maxormins,
Dim,
varTypes,
lb,
ub,
lbin,
ubin)
def evalVars(self, Vars): # 目标函数
beta= Vars[:, [0]]
f = Vars[:, [1]]
score = 4*1852*1852*2/(-np.cos(beta)*f)
#先把角度转化为弧度
angle_degrees_1 = 1.5
angle_radians_1 = math.radians(angle_degrees_1)
angle_degrees_60 = 60
angle_radians_60 = math.radians(angle_degrees_60)
k=np.arctan(1/(np.sin(beta)*np.tan(angle_radians_1)))
D=[]
for d in range(23,216):
D.append(abs(np.sin(k)*d*np.sin(angle_radians_60)/np.sin(k-angle_radians_60))+abs(np.sin(k)*(d+f*np.si
n(beta)*np.tan(angle_radians_1))*np.sin(angle_radians_60)/np.sin(k+angle_radians_60))
+f*np.cos(beta)-0.2*d*np.sin(angle_radians_60)*(abs(np.sin(k)/np.sin(k+angle_radians_60))+abs(np.sin(k
)/np.sin(k-angle_radians_60))))
D.append(0.1*d*np.sin(angle_radians_60)*(abs(np.sin(k)/np.sin(k+angle_radians_60))+abs(np.sin(k)/np.si
n(k-angle_radians_60))))
5
-abs(np.sin(k)*d*np.sin(angle_radians_60)/np.sin(k-angle_radians_60))+abs(np.sin(k)*(d+f*np.sin(beta)*n
p.tan(angle_radians_1))*np.sin(angle_radians_60)/np.sin(k+angle_radians_60))
+f*np.cos(beta)
CV=np.hstack(D)
return score, CV
if __name__ == '__main__':
# 实例化问题对象
problem = MyProblem()
# 构建算法
algorithm = ea.soea_DE_rand_1_bin_templet(
problem,
ea.Population(Encoding='RI', NIND=100),
MAXGEN=200,
logTras=1)
algorithm.mutOper.F = 0.5
algorithm.recOper.XOVR = 0.7
# 求解
res = ea.optimize(algorithm,
verbose=True,
drawing=1,
outputMsg=True,
drawLog=False,
saveFlag=True)
print(res)
问题4


%读取数据
[X1,X2,X3]=xlsread("C:\Users\JJH\Desktop\CUMCM2023Problems\B 题\附件.xlsx");
x=X1(1,2:end);
y=X1(2:end,1);
z=X1(2:end,2:end);
cha=diff(z,1,2);
he=sum(cha(1,1:end));
average=he/250
[X Y]=meshgrid(x,y);
subplot(3,2,[1 2]);
meshz(X,Y,z);
subplot(3,2,3);
z1=triu(z);
meshz(X,Y,z1)
6
subplot(3,2,4);
z2=triu(z,-50);
meshz(X,Y,z2)
subplot(3,2,5);
z3=tril(z);
meshz(X,Y,z3)
subplot(3,2,6);
z4=tril(z,-50);
meshz(X,Y,z4)
shading interp
相关文章:
数模国赛——多波束测线问题模型建立研究分析
第一次参加数模国赛,太菜了~~~~意难平 问题一 画出与测线方向垂直的平面和海底坡面的交线构成一条与水平面夹角为𝐀的斜线的情况下的示意图进行分析,将覆盖宽度分为左覆盖宽度和右覆盖宽度,求出它们与海水深度和𝐀、…...
[AUTOSAR][诊断管理][ECU][$37] 请求退出传输。终止数据传输的(上传/下载)
文章目录 一、简介二、服务请求报文定义肯定响应支持的NRC三、示例流程Step 1:Step 2:报文示例:Step 1:请求RequestDownload(0x34)服务Step 2:请求TransferData (0x36)服务,传输数据Step 3:请求RequestTransferExit(0x37)服务总结:三、示例代码37_req_transfer_e…...
vue+canvas实现横跨整个页面的动态的波浪线(贝塞尔曲线)
本来写这个特效 我打算用css实现的,结果是一波三折,我太难了,最终没能用css实现,转战了canvas来实现。来吧先看效果图 当然这个图的波浪高度、频率、位置、速度都是可调的,请根据自己的需求调整,如果你讲波浪什么的调大一下 还有有摆动的效果哦。 以下是完整代码 <…...
LeetCode算法题解| 669. 修剪二叉搜索树、108. 将有序数组转换为二叉搜索树、538. 把二叉搜索树转换为累加树
一、LeetCode 669. 修剪二叉搜索树 题目链接:669. 修剪二叉搜索树 题目描述: 给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变…...
直播界很火的无线领夹麦克风快充方案 Type-C接口 PD快充+无线麦克风可同时进行
当前市场上流行一款很火的直播神器,无线领夹麦克风(MIC),应用于网红直播,网课教学,采访录音,视频录制,视频会议等等场景。 麦克风对我们来说并不陌生,而且品类有很多。随…...
Jmeter 汉化中文语言
找到 bin -> jmeter.propertise 修改参数:languageen --> languagazh_CN OK!...
centos9 stream 下 rabbitmq高可用集群搭建及使用
RabbitMQ是一种常用的消息队列系统,可以快速搭建一个高可用的集群环境,以提高系统的弹性和可靠性。下面是搭建RabbitMQ集群的步骤: 基于centos9 stream系统 1. 安装Erlang和RabbitMQ 首先需要在所有节点上安装Erlang和RabbitMQ。建议使用官…...
代码随想录算法训练营第10天|232. 用栈实现队列 225. 用队列实现栈
JAVA代码编写 232. 用栈实现队列 请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty): 实现 MyQueue 类: void push(int x) 将元素 x 推到队列的末尾int pop() 从队列的开头移除…...
线上Kafka集群如何调整消息存储时间
这里是weihubeats,觉得文章不错可以关注公众号小奏技术,文章首发。拒绝营销号,拒绝标题党 Kafka版本 kafka_2.13-3.5.0 背景 Kafka 默认消息存储时间为7天,实际线上的业务使用Kafka更多的是一些数据统计之类的业务,大多是朝生夕…...
[迁移学习]DA-DETR基于信息融合的自适应检测模型
原文标题为:DA-DETR: Domain Adaptive Detection Transformer with Information Fusion;发表于CVPR2023 一、概述 本文所描述的模型基于DETR,DETR网络是一种基于Transformer的目标检测网络,详细原理可以参见往期文章:…...
【MATLAB】全网唯一的13种信号分解+FFT傅里叶频谱变换联合算法全家桶
有意向获取代码,请转文末观看代码获取方式~ 大家吃一顿火锅的价格便可以拥有13种信号分解FFT傅里叶频谱变换联合算法,绝对不亏,知识付费是现今时代的趋势,而且都是我精心制作的教程,有问题可随时反馈~也可单独获取某一…...
Nginx安装与配置
1.下载安装包 官网下载地址:nginx: download 可以先将安装包下载到本地再传到服务器,或者直接用wget命令将安装包下载到服务器,这里我们直接将安装包下载到服务器上。未安装wget命令的需要先安装wget,yum install -y wget [root…...
linux笔记总结-基本命令
参考: 1.Linux 和Windows比 比较 (了解) 1. 记住一句经典的话:在 Linux 世界里,一切皆文件 2. Linux目录结构 /lib • 系统开机所需要最基本的动态连接共享库,其作用类似于Windows里的DLL文件。几 乎所有…...
[PHP]禅道项目管理软件ZenTaoPMS源码包 v16.4
禅道项目管理软件ZenTaoPMS一键安装包是一款国产的开源项目管理软件。它集产品管理、项目管理、质量管理、文档管理、组织管理和事务管理于一体,是一款专业的研发项目管理软件,完整地覆盖了项目管理的核心流程。注重实效的管理思想,合理的软件…...
Required String parameter ‘name‘ is not present
[org.springframework.web.bind.MissingServletRequestParameterException: Required String parameter name is not present] 服务端有参数name,客户端没有传上来...
路由器基础(五): OSPF原理与配置
开放式最短路径优先 (Open Shortest Path First,OSPF) 是一个内部网关协议 (Interior Gateway Protocol,IGP),用于在单一自治系统(Autonomous System,AS) 内决策路由。OSPF 适合小型、中型、较大规模网络。OSPF 采用Dijkstra的最短路径优先算法 (Shortest Pat…...
Leetcode1128. 等价多米诺骨牌对的数量
Every day a Leetcode 题目来源:1128. 等价多米诺骨牌对的数量 解法1:暴力 代码: class Solution { public:int numEquivDominoPairs(vector<vector<int>> &dominoes){int n dominoes.size(), count 0;for (int i 0;…...
Dev-C调试的基本方法2-2
3.3 跳出函数 在图6所示的状态下,点击单步调试(F7)会继续调试下一行,而如果想结束在函数中的调试,则点击图4③所示的跳出函数,或CtrlF8按键跳出f()函数,程序将会停在图5所示的第11行处。 3.4 …...
企业之间的竞争,ISO三体系认证至关重要!
ISO三体系认证是指ISO 9001质量管理体系认证、ISO 14001环境管理体系认证、ISO 45001(OHSAS18001)职业健康安全管理体系认证。企业(组织)自愿申请、通过ISO三体系认证,并贯彻落实,确实能获益多多。 ISO 9001质量管理体系 我们经…...
node教程(四)Mongodb+mongoose
文章目录 一、mongodb1.简介1.1Mongodb是什么?1.2数据库是什么?1.3数据库的作用1.4数据库管理数据的特点 2.核心概念3.下载安装与启动4.命令行交互4.1数据库命令4.3文档命令 二、Mongoose1.介绍2.作用3.使用流程4.插入文档5.mongoose字段类型 一、mongod…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...
