YUV图像格式详解
1.概述
YUV是一种图像颜色编码方式。
相对于常见且直观的RGB颜色编码,YUV的产生自有其意义,它基于人眼对亮度比色彩的敏感度更高的特点,使用Y、U、V三个分量来表示颜色,并通过降低U、V分量的采样率,尽可能保证图像质量的情况下,做到如下3点:
- 占用更低的存储空间
- 数据传输效率更高
- 兼容黑白与彩色显示
具体是怎么做到的,后文中会一一讲解,在此之前,先简单过一下图像基础知识
2.像素
想要深入了解YUV格式,必须得从Bit、Byte级别“看穿看透”它
Bit:位 —— 计算机硬件系统能识别的最基础单位
Byte:字节 —— 计算机文件系统能识别的最基础单位
像素:Pixel —— 显示图像的最基础单位
显示器上的一个像素点对应图像里的一个像素,不管哪种显示器,最终都是以像素为最小单位进行图像呈现。
- 早期CRT显示器通过显像管中电子枪喷射电子流到屏幕实现。
- 现在的LCD显示器通过电压改变液晶分子排列实现。
- LED和OLED显示器则是通过点阵式发光二极管实现。
不论技术怎么革新,有两点是始终不变的:
- 显示的基础单元是像素
- 每个像素的色彩由红、绿、蓝三原色混合实现
三原色是什么?显示器像素点的颜色数据是怎么排列存储的?
带着问题先了解下RGB,为YUV的了解做个铺垫
3.RGB
RGB:用R、G、B三个分量来表示像素点颜色
- R:红(Red)
- G:绿(Green)
- B:蓝(Blue)
这三种颜色就称为三原色,它们以不同比例混合能生成其他任意颜色
RGB表示一帧图像:
- 每个像素点背后都包含一组R、G、B分量,像素点的颜色就是它们的混合
- R、G、B每个分量分别占1个byte,也就是8个bit (也有其他精度,本博文不作研究)

一张分辨率 1280 * 720 的RGB图片,占用 1280 * 720 * 3 / 1024 / 1024 = 2.63MB 空间。
4.YUV表示图像
YUV:用Y、U、V三个分量来表示像素颜色
- Y 表示亮度(Luminance、缩写Luma),即为灰度值
- U 和 V 表示色度(Chrominance、缩写Chroma),即为色调和饱和度
YUV表示一帧图像:

默认Y、U、V每个分量占用存储空间1个byte(也有其他精度,本博文不作研究)
一张分辨率为 1280 * 720 的YUV图片,采用上图里每个像素都包含一组Y、U、V分量的情况下,还是会占用 "1280 * 720 * 3 / 1024 / 1024 = 2.63 MB" 空间。
问题来了,这不是跟RGB占用的空间一样吗?并没有什么优化啊!
前文概述中提到过,YUV是通过降低U、V分量的采样率来实现它占用空间小和传输效率高的优势。
也就是图像每个像素的Y分量都被完整采样全部保存,但是U、V分量只做部分采样,让多个像素按照一些规则共用U、V分量。
5.YUV类别
根据U、V分量的采样率不同,也就是多个像素共用U、V分量的规则不同,YUV有如下几个常见类别:
- 4:4:4 一个像素一组Y、U、V
- 4:4:0 垂直方向两个像素共用一组U、V
- 4:2:2 水平方向两个像素共用一组U、V
- 4:2:0 水平垂直四个像素共用一组U、V
- 4:1:1 水平方向四个像素共用一组U、V
(1).YUV444:
每个像素都包含一组完整的Y、U、V分量
YUV444 每个像素占用的存储空间,也就是像素深度(piex_depth)为:3 * 8bit = 24bits
一帧 YUV444 图像占用的空间就是:w * h * 3byte

(2).YUV440:
垂直方向两个相邻的像素共用一组U、V
YUV440的像素深度(piexl_depth):(1 * 8bit) + (0.5 *8bit) + (0.5 *8bit) = 16bits
一帧 YUV444 图像占用的空间就是:w * h * 2byte

(3).YUV422:
水平方向两个相邻的像素共用一组U、V
YUV422 的像素深度(piexl_depth):(1 * 8bit) + (0.5 *8bit) + (0.5 *8bit) = 16bits
一帧 YUV444 图像占用的空间就是:w * h * 2byte

(4).YUV411:
水平方向两个相邻的像素共用一组U、V
YUV411 的像素深度(piexl_depth):(1 * 8bit) + 2*(0.25 *8bit) = 12bits
一帧 YUV444 图像占用的空间就是:w * h * 1.5byte

(5).YUV420:
水平垂直方向四个相邻的像素共用一组U、V
YUV420的像素深度(piexl_depth):(1 * 8bit) + 2*(0.25 *8bit) = 12bits
一帧YUV444图像占用的空间就是:w * h * 1.5byte

注意:
YUV420 因为是 2x2 矩阵平面的4个像素共用一组U、V
所以它的像素排列顺序在内存空间中有其特定规律,按"Z"字型排列


参考链接:2.7.1.2. Planar YUV formats — The Linux Kernel documentation
(6).综述
如上所述,根据U、V分量不同的采样规则,YUV可以分为多个类别
以上列举的是较为常见的几种,还有其他YUV类别,有兴趣可自行研究
每一类YUV又可以根据Y、U、V三个分量数据的存储排列方式不同细分出不同格式
6.YUV数据存储模式
(1).三种存储模式
- planar平面模式:先连续存储所有像素点的 Y 分量,
再连续存 U 分量,
然后连续存 V 分量 - Semi-Planar半平面模式:先连续存储所有像素点的 Y 分量,
再交替存储U、V分量 - packed 打包模式:连续交替存储每个像素点的 Y、U、V 分量
注:在YUV422中,有时候会看到还有一种 Interleaved 模式,它其实就是 Packed,
只不过YUV422格式中有人觉得用 Interleaved 这个词更形象一些,
所以在YUV422中有时会用 Interleaved 代替 Packed 表述。
(2).三种存储模式图示:
以一张全采样 4x4=16 个像素的 YUV444 格式图像为例,
它在三种模式下各分量在内存空间的排列如下:
Planar:3个矩阵平面分别存储Y、U、V分量数据

Semi-Planar:Semi即为"一半",一个矩阵平面存Y,存U、V只用Planar的一半一个矩阵平面

Packed:Y、U、V三个分量交替存一个矩阵平面

当然,即便是YUV444全采样类别,三种模式下Y、U、V分量的存储排列也不仅仅只有上述三种,还可以排列出很多花样,产生多种格式,这一点在后面的章节会详细讲到。
(3) Y、U、V分量对应Byte[ ]数组示例
如果要对图像做一些操作,比如图像格式转换,任意区域裁剪,色值修改,像素插值等,就需要在图像最基础单元byte层面,将图像数据从内存中读出解析到byte[ ]数组来操作。
不同模式解析出来的byte[ ]数组个数是不一样的
- Planar: 3个byte[ ],分别对应Y、U、V 分量数据
- Semi-Planar:2个byte[ ],分别对应 Y 和 (U、V)
- Packed: 1个byte[ ],对应(Y、U、V)
Android Camera2中有个很形象的示例:
onImageAvailable(ImageReader reader) 回调获取到的Image图像就是YUV420 planar格式,Image有3个分别包含ByteBuffer的Plane,每个Plane的ByteBuffer解析成byte[ ]后,就会有如下对应关系:
@Override
public void onImageAvailable(ImageReader reader) {Image image = reader.acquireNextImage();ByteBuffer bufferY = image.getPlanes()[0].getBuffer();ByteBuffer bufferU = image.getPlanes()[1].getBuffer();ByteBuffer bufferV = image.getPlanes()[2].getBuffer();byte[] bytesY = new byte[bufferY.capacity()];byte[] bytesU = new byte[bufferU.capacity()];byte[] bytesV = new byte[bufferV.capacity()];bufferY.get(bytesY);bufferU.get(bytesU);bufferV.get(bytesV);image.close();
}
YUV420 planar:
byetdata[0] —— Y分量, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8…, Y16, …
byetdata[1] —— U分量, U1, U2, U3, U4……
byetdata[2] —— V分量, V1, V2, V3, V4 ……
假设一下,
如果拿到的不是planar而是YUV420 semi-planar 或 YUV444 packed
图像数据解析成byte[ ]后的对应关系:
YUV420 semi-planar:
byetdata[0] —— Y分量, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8……
byetdata[1] —— U、V分量, U1, V1, U2, V2……
byetdata[2] 没有
YUV444 packed:
byetdata[0] ——-Y、U、V分量, Y1, U1, V1, Y2, U2, V2, Y3, U3, V3……
byetdata[1] 和byetdata[2] 没有
这么看可能不是太直观,下面就用图示看看不同格式的YUV,它的三个分量是怎么排列存储的
7.YUV格式详细注解
一帧宽:w,高:h 的YUV图像,
以8个像素为例,一些常见YUV格式分量的存储排列如下:
7.1 YUV420
(1).YUV420 Plannar:I420
YUV分量分别存放,先是 w * h 个的 Y,后面跟 w * h * 0.25 个 U, 最后是 w * h * 0.25 个 V
每个像素占用空间(像素深度):1.5byte
总大小为: w * h * 1.5

(2).YUV420 Plannar:YV12
YUV 分量分别存放,先是 w * h 个 Y,后面跟 w * h * 0.25 个 V, 最后是 w * h * 0.25 个 U
每个像素占用空间(像素深度):1.5byte
总大小为: w * h * 1.5

(3).YUV420 Semi-Planar:NV12
Y 分量单独存放,UV 分量交错存放,UV 在排列的时候,从 U 开始
每个像素占用空间(像素深度):1.5byte
总大小为: w * h * 1.5

(4).YUV420 Semi-Planar:NV21
Y 分量单独存放,UV 分量交错存放,UV 在排列的时候,从 V开始
每个像素占用空间(像素深度):1.5byte
总大小为:w * h * 1.5
7.2 YUV422
(1).YUV422 Plannar:I422
YUV 分量分别存放,先是 w * h 个 Y,后面跟 w * h * 0.5 个 U, 最后是 w * h * 0.5 个 V
每个像素占用空间(像素深度):2byte
总大小为: w * h * 2

(2).YUV422 Plannar:YV16
UV 分量分别存放,先是 w * h 个 Y,后面跟 w * h * 0.5 个 V, 最后是 w * h * 0.5 个 U
每个像素占用空间(像素深度):2byte
总大小为: w * h * 2

(3).YUV422 Semi-Planar:NV61
Y 分量单独存放,UV 分量交错存放,UV 在排列的时候,从 V 开始
每个像素占用空间(像素深度):2byte
总大小为:w * h * 2

(4).YUV422 Semi-Planar:NV16
Y 分量单独存放,UV 分量交错存放,UV 在排列的时候,从 U 开始
每个像素占用空间(像素深度):2byte
总大小为:w * h * 2

(4).YUV422Packed (Interleaved):YUVY
Interleaved 即是 Packed ,在 Packed 内部,YUV 的排列顺序是 Y U V Y,两个 Y 共用一组 UV
每个像素占用空间(像素深度):2byte
总大小为:w * h * 2

(6).YUV422Packed (Interleaved):UYVY
YUV 的排列顺序是 UYVY,两个 Y 共用一组 UV
每个像素占用空间(像素深度):2byte
总大小为:w * h * 2

7.3 YUV444
(1).YUV444 Plannar:I444
YUV 分量分别存放,先是 w * h 个 Y,后面跟 w * h 个 U, 最后是 w * h 个 V
每个像素占用空间(像素深度):3byte
总大小为: w * h * 3

(2).YUV444 Plannar:YV24
YUV 分量分别存放,先是 w * h 个 Y,后面跟 w * h 个 V, 最后是 w * h 个 U
每个像素占用空间(像素深度):3byte
总大小为:w * h * 3

(3).YUV444 Semi-Planar:NV24
Y 分量单独存放,UV 分量交错存放,UV 在排列的时候,从 U 开始。
每个像素占用空间(像素深度):3byte
总大小为:w * h * 3

(4).YUV444 Semi-Planar:NV42
Y 分量单独存放,UV 分量交错存放,UV 在排列的时候,从 V 开始。
每个像素占用空间(像素深度):3byte
总大小为:w * h * 3

8.YUV格式详图
下图即为YUV常见格式详细图示,方便后续查阅
最后一列仍是以8个像素点为例,简略地表示每个格式Y、U、V分量的存储排列

9.结束语
关于YUV格式就先讲解这么多。
在此篇博文撰写过程中,也参考了多篇官方和非官方的资料文档。
非官方的博文资料有的会出现一些纰漏,比如某种格式NV24,是UV交替还是VU交替,有的个人文档里就表述错了,遇到这种问题就需要参考官方资料进行比对。
感谢这些官方机构和个人博主们。
参考链接如下:
官方参考链接:
2. Image Formats — The Linux Kernel documentation
2.10. YUV Formats — The Linux Kernel documentation
2.7.1.2. Planar YUV formats — The Linux Kernel documentation
YUV - VideoLAN Wiki
Video Rendering with 8-Bit YUV Formats | Microsoft Learn
个人博客参考连接:
YUV 格式详解,只看这一篇就够了(转) - 知乎
YUV图像的常见格式(图示)_yuv图片-CSDN博客
YUV格式到底是什么?-CSDN博客
【精选】YUV格式详解【全】_编码笔记的博客-CSDN博客
音视频基础之YUV格式-CSDN博客
【精选】安卓camera2 API获取YUV420_888格式详解_yuv_420_888-CSDN博客
相关文章:
YUV图像格式详解
1.概述 YUV是一种图像颜色编码方式。 相对于常见且直观的RGB颜色编码,YUV的产生自有其意义,它基于人眼对亮度比色彩的敏感度更高的特点,使用Y、U、V三个分量来表示颜色,并通过降低U、V分量的采样率,尽可能保证图像质…...
软考高项-质量管理措施
质量规划 编制《项目质量规划书》、《项目验收规范》等质量文件,对文件进行评审,对项目成员进行质量管理培训; 质量保证 评审、过程分析、定期对项目进行检查并跟踪改进情况; 质量控制 测试、因果分析、变更、统计抽样等。 80/…...
Redis那些事儿(一)
说到redis大家都不陌生,其中包括:共有16个数据库,默认为第0个数据库;数据以key-value键值的形式存储;数据类型包括String、List、Hash、Set等,其中最常用的是字符串;是单线程的、基于内存的&…...
【多媒体文件格式】M3U8
M3U8 M3U8文件是指UTF-8编码格式的M3U文件(M3U使用Latin-1字符集编码)。M3U文件是一个记录索引的纯文本文件,打开它时播放软件并不是播放它,而是根据它的索引找到对应的音视频文件的网络地址进行在线播放。 m3u8基本上可以认为就是.m3u格式文件&#x…...
linux中xargs的实用技巧
在Linux命令行中,有许多强大的工具可以帮助我们处理和操作文件、目录以及其他数据。其中之一就是xargs命令。xargs命令可以将标准输入数据转换成命令行参数,从而提高命令的效率和灵活性。本文将介绍xargs命令的基本用法,并通过生动的代码和输…...
【Jmeter】生成html格式接口自动化测试报告
jmeter自带执行结果查看的插件,但是需要在jmeter工具中才能查看,如果要向领导提交测试结果,不够方便直观。 笔者刚做了这方面的尝试,总结出来分享给大家。 这里需要用到ant来执行测试用例并生成HTML格式测试报告。 一、ant下载安…...
如何将极狐GitLab 漏洞报告导出为 HTML 或 PDF 格式或导出到 Jira
目录 导出为 HTML/PDF 将漏洞信息导出到 Jira 参考资料 极狐GitLab 的漏洞报告功能可以让开发人员在统一的平台上面管理代码,对其进行安全扫描、管理漏洞报告并修复漏洞。但有些团队更喜欢使用类似 Jira 的单独工具来管理他们的安全漏洞。他们也可能需要以易于理…...
uniapp原生插件之安卓文字转拼音原生插件
插件介绍 安卓文字转拼音插件,支持转换为声调模式和非声调模式,支持繁体和简体互相转换 插件地址 安卓文字转拼音原生插件 - DCloud 插件市场 超级福利 uniapp 插件购买超级福利 详细使用文档 uniapp 安卓文字转拼音原生插件 用法 在需要使用插…...
[架构之路-254/创业之路-85]:目标系统 - 横向管理 - 源头:信息系统战略规划的常用方法论,为软件工程的实施指明方向!!!
目录 总论: 一、数据处理阶段的方法论 1.1 企业信息系统规划法BSP 1.1.1 概述 1.1.2 原则 1.2 关键成功因素法CSF 1.2.1 概述 1.2.2 常见的企业成功的关键因素 1.3 战略集合转化法SST:把战略目标转化成信息的集合 二、管理信息系统阶段的方法论…...
CSP-J 2023真题解析
T1 小苹果 一、题目链接 P9748 [CSP-J 2023] 小苹果 二、题目大意 现有 n n n 个苹果从左到右排成一列,编号为从 1 1 1 到 n n n。 每天都会从中拿走一些苹果。拿取规则是,从左侧第 1 1 1 个苹果开始、每隔 2 2 2 个苹果拿走 1 1 1 个苹果。随…...
【Proteus仿真】【51单片机】贪吃蛇游戏
文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器,使用8*8LED点阵、按键模块等。 主要功能: 系统运行后,可操作4个按键控制小蛇方向。 二、软件设计 /* 作者:嗨小易…...
Android 原生定位开发(解决个别手机定位失败问题)
文章目录 前言一、实现步骤二、使用步骤1.服务启动工具类2.实现LocationService 总结 前言 在android开发中地图和定位是很多软件不可或缺的内容,这些特色功能也给人们带来了很多方便。定位一般分为三种发方案:即GPS定位、Google网络定位以及基站定位。…...
uni-app 中如何实现数据组件间传递?
在 uni-app 中,实现数据组件间传递可以使用 Props 或 Vuex。 Props 是一种组件通信的方式,通过向子组件传递数据来实现组件间的数据传递。下面是一个示例: 父组件: <template><child :message"hello">&l…...
SpringBoot整合自签名SSL证书,转变HTTPS安全访问(单向认证服务端)
前言 HTTP 具有相当优秀和方便的一面,然而 HTTP 并非只有好的一面,事物皆具两面性,它也是有不足之处的。例如: 通信使用明文(不加密),内容可能会被窃听。不验证通信方的身份,因此有可能会遭遇…...
k8s:endpoint
在 Kubernetes 中,Endpoint 是一种 API 对象,它用于表示集群内某个 Service 的具体网络地址。换句话说,它连接到一组由 Service 选择的 Pod,从而使它们能够提供服务。每个 Endpoint 对象都与相应的 Service 对象具有相同的名称&am…...
最新版星火官方搬运工具6.0,高级搬运,100%过原创,短视频上热门搬运软件黑科技【搬运脚本+使用技术教程】
软件介绍: 高级搬运,条条过原创 短视频暴力热门搬运黑科技 自研摄像头内录突破性技术6.0 无需任何繁琐准备工作安装即用 无需复杂售后培训看教程即可学会 直装直用自研技术更好卖 无需root 无需框架 更方便 无需xposed 无需vcam更安全 适配99%以…...
轧钢厂安全生产方案:AI视频识别安全风险智能监管平台的设计
一、背景与需求 轧钢厂一般都使用打包机对线材进行打包作业,由于生产需要,人员需频繁进入打包机内作业,如:加护垫、整包、打包机检修、调试等作业。在轧钢厂生产过程中,每个班次生产线材超过300件,人员在一…...
Linux Dotnet 程序堆栈监控
# 查看进程 dotnet-stack ps #显示如下2014067 dotnet /usr/share/dotnet/dotnet k1 --LogLevel4 2014087 dotnet /usr/share/dotnet/dotnet --LogLevel4 2014089 dotnet /usr/share/dotnet/dotnet --LogLevel4 # 根据PID查看这个进程每个线程的堆栈 dotnet-stack repor…...
后端设计PG liberty的作用和增量式生成
Liberty(俗称LIB和DB),是后端设计中重要的库逻辑描述文件,这里边包含了除过physical(当然也有一点点涉及)以外所有的信息,对整个后端设计实现有非常大的作用。借此机会,一起LIB做一个…...
Linux 安装 RocketMq
RocketMq是阿里出品(基于MetaQ)的开源中间件,已捐赠给Apache基金会并成为Apache的顶级项目。基于java语言实现,十万级数据吞吐量,ms级处理速度,分布式架构,功能强大,扩展性强。 官网…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

