当前位置: 首页 > news >正文

OpenCV官方教程中文版 —— 图像修复

OpenCV官方教程中文版 —— 图像修复

  • 前言
  • 一、基础
  • 二、代码
  • 三、更多资源

前言

本节我们将要学习:

使用修补技术去除老照片中小的噪音和划痕

使用 OpenCV 中与修补技术相关的函数

一、基础

在我们每个人的家中可能都会几张退化的老照片,有时候上面不小心在上面弄上了点污渍或者是画了几笔。你有没有想过要修复这些照片呢?我们可以使用笔刷工具轻易在上面涂抹两下,但这没用,你只是用白色笔画取代了黑色笔画。此时我们就要求助于图像修补技术了。这种技术的基本想法很简单:使用坏点周围的像素取代坏点,这样它看起来和周围像素就比较像了。如下图所示(照片来自维基百科)

在这里插入图片描述
为了实现这个目的,科学家们已经提出了好几种算法,OpenCV 提供了其中的两种。这两种算法都可以通过使用函数 cv2.inpaint() 来实施。

第一个算法是根据 Alexandru_Telea 在 2004 发表的文章实现的。它是基于快速行进算法的。以图像中一个要修补的区域为例。算法从这个区域的边界开始向区域内部慢慢前进,首先填充区域边界像素。它要选取待修补像素周围的一个小的邻域,使用这个邻域内的归一化加权和更新待修复的像素值。权重的选择是非常重要的。对于靠近带修复点的像素点,靠近正常边界像素点和在轮廓上的像素点给予更高的权重。当一个像素被修复之后,使用快速行进算法(FMM)移动到下一个最近的像素。FMM 保证了靠近已知(没有退化的)像素点的坏点先被修复,这与手工启发式操作比较类似。可以通过设置标签参数为 cv2.INPAINT_TELEA 来使用此算法。

第二个算法是根据 Bertalmio,Marcelo,Andrea_L.Bertozzi, 和 Guillermo_Sapiro在 2001 年发表的文章实现的。这个算法是基于流体动力学并使用了偏微分方程。基本原理是启发式的。它首先沿着正常区域的边界向退化区域的前进(因为边界是连续的,所以退化区域非边界与正常区域的边界应该也是连续的)。它通过匹配待修复区域中的梯度向量来延伸等光强线(isophotes,由灰度值相等的点练成的线)。为了实现这个目的,作者是用来流体动力学中的一些方法。完成这一步之后,通过填充颜色来使这个区域内的灰度值变化最小。可以通过设置标签参数为 cv2.INPAINT_NS 来使用此算法。

二、代码

我们要创建一个与输入图像大小相等的掩模图像,将待修复区域的像素设置为 255(其他地方为 0)。所有的操作都很简单。我要修复的图像中有几个黑色笔画。我是使用画笔工具添加的。

# -*- coding: utf-8 -*-
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('messi_2.png')
mask = cv2.imread('mask2.png',0)
dst = cv2.inpaint(img,mask,3, cv2.INPAINT_NS)
dst2 = cv2.inpaint(img,mask,3, cv2.INPAINT_TELEA)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
dst2 = cv2.cvtColor(dst2, cv2.COLOR_BGR2RGB)
plt.figure()
plt.subplot(221),plt.imshow(img),plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(222),plt.imshow(mask, cmap='gray'),plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(223),plt.imshow(dst),plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.subplot(224),plt.imshow(dst2),plt.xticks([]), plt.yticks([])  # to hide tick values on X and Y axis
plt.show()

结果如下。第一幅图是退化的输入图像,第二幅是掩模图像。第三幅是使用第一个算法的结果,最后一副是使用第二个算法的结果。
在这里插入图片描述

三、更多资源

  1. Bertalmio, Marcelo, Andrea L. Bertozzi, and Guillermo Sapiro.“Navier-stokes, fluid dynamics, and image and video inpainting.”In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I-355. IEEE, 2001.
  2. Telea, Alexandru. “An image inpainting technique based on the fast marching method.”Journal of graphics tools 9.1 (2004): 23-34.

相关文章:

OpenCV官方教程中文版 —— 图像修复

OpenCV官方教程中文版 —— 图像修复 前言一、基础二、代码三、更多资源 前言 本节我们将要学习: • 使用修补技术去除老照片中小的噪音和划痕 • 使用 OpenCV 中与修补技术相关的函数 一、基础 在我们每个人的家中可能都会几张退化的老照片,有时候…...

前端难学还是后端难学?系统安全,web安全,网络安全是什么区别?

系统安全,web安全,网络安全是什么区别?三无纬度安全问题 系统安全,可以说是电脑软件的安全问题,比如windows经常提示修复漏洞,是一个安全问题 网页安全,网站安全,比如,…...

diffusers-Load pipelines,models,and schedulers

https://huggingface.co/docs/diffusers/using-diffusers/loadinghttps://huggingface.co/docs/diffusers/using-diffusers/loading 有一种简便的方法用于推理是至关重要的。扩散系统通常由多个组件组成,如parameterized model、tokenizers和schedulers&#xff0c…...

私域营销必备:轻松掌握微信CRM管理方法

大家在微信私域营销中都遇到了什么问题? 比如管理时间不够,群发实效性低,自动回复无法适应变化等等。 我们可以利用微信CRM这个工具,轻松解决这些问题。 请问你们最想用这个工具解决什么问题呢? 使用微信CRM不仅可…...

最长回文子串-LeetCode5 动态规划

由于基础还不是很牢固 一时间只能想到暴力的解法: 取遍每个子串 总数量nn-1n-2…1 O(n^2) 判断每个子串是否属于回文串 O(n) 故总时间复杂度为O(n^3) class Solution { public:string longestPalindrome(string s) { int max0;string ret;for(int i0;i<s.size();i)for(int…...

mysql简单备份和恢复

版本&#xff1a;mysql8.0 官方文档 &#xff1a;MySQL :: MySQL 8.0 Reference Manual :: 7 Backup and Recovery 1.物理备份恢复 物理备份是以数据文件形式备份。这种方式效率高点&#xff0c;适合大型数据库备份。物理备份可冷备可热备。 使用mysqlbackup 命令进行物理备…...

JMeter介绍

1. JMeter是什么&#xff1f; 是Apache组织开发基于Java的接口测试工具&#xff0c;性能测试工具 2.JMeter的优缺点 优点&#xff1a; 开源&#xff0c;免费 跨平台 支持多协议 轻量级别 缺点&#xff1a; 不支持IP欺骗 不可验证页面UI 3.JMeter可以用来做什么&#xff1f; …...

flink job同时使用BroadcastProcessFunction和KeyedBroadcastProcessFunction例子

背景&#xff1a; 广播状态可以用于规则表或者配置表的实时更新&#xff0c;本文就是用一个欺诈检测的flink作业作为例子看一下BroadcastProcessFunction和KeyedBroadcastProcessFunction的使用 BroadcastProcessFunction和KeyedBroadcastProcessFunction的使用 1.首先看主流…...

数据中心系统解决方案

设计思路 系统设计过程中充分考虑各个子系统的信息共享要求&#xff0c;对各子系统进行结构化和标准化设计&#xff0c;通过系统间的各种联动方式将其整合成一个有机的整体&#xff0c;使之成为一套整体的、全方位的数据中心大楼综合管理系统&#xff0c;达到人防、物防和技防…...

服务器开设新账户,创建账号并设置密码

实验室又进新同学了&#xff0c;服务器开设新账号搞起来 1、创建用户&#xff1a; 在root权限下&#xff0c;输入命令useradd -m 用户名&#xff0c;如下 sudo useradd -m yonghuming 2、设置密码&#xff1a; 输入命令passwd 用户名 回车&#xff0c;接着输入密码操作&…...

【C++】关于构造函数后面冒号“:“的故事------初始化列表(超详细解析,小白一看就懂)

目录 一、前言 二、 初始化的概念区分 三、初始化列表 &#xff08;重点&#xff09; &#x1f4a6;初始化列表的概念理解 &#x1f4a6;初始化列表的注意事项 四、共勉 一、前言 在之前的博客学习中&#xff0c;我们已经学习了【C】的六大默认成员函数 &#xff0c;想必大…...

【Shell 系列教程】shell基本运算符(四)

文章目录 往期回顾关系运算符布尔运算符逻辑运算符字符串运算符文件测试运算符其他检查符&#xff1a; 往期回顾 【Shell 系列教程】shell介绍&#xff08;一&#xff09;【Shell 系列教程】shell变量&#xff08;二&#xff09;【Shell 系列教程】shell数组&#xff08;三&am…...

MongoDB安装及开发系例全教程

一、系列文章目录 一、MongoDB安装教程—官方原版 二、MongoDB 使用教程(配置、管理、监控)_linux mongodb 监控 三、MongoDB 基于角色的访问控制 四、MongoDB用户管理 五、MongoDB基础知识详解 六、MongoDB—Indexs 七、MongoDB事务详解 八、MongoDB分片教程 九、Mo…...

ffmpeg命令帮助文档

一&#xff1a;帮助文档的命令格式 ffmpeg -h帮助的基本信息ffmpeg -h long帮助的高级信息ffmpeg -h full帮助的全部信息 ffmpeg的命令使用方式&#xff1a;ffmpeg [options] [[infile options] -i infile] [[outfile options] outfile] 二&#xff1a;将帮助文档输出到文件 …...

回归预测 | Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测

Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测 目录 Matlab实现SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量机的多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.SO-CNN-SVM蛇群算法优化卷积神经网络-支持向量…...

【原创】java+swing+mysql校园共享单车管理系统设计与实现

摘要&#xff1a; 校园共享单车作为一种绿色、便捷的出行方式&#xff0c;在校园内得到了广泛的应用。然而&#xff0c;随着单车数量的增加&#xff0c;管理难度也不断加大。如何提高单车的利用率和管理效率&#xff0c;成为校园共享单车发展面临的重要问题。本文针对这一问题…...

(自适应手机端)响应式新闻博客知识类pbootcms网站模板 自媒体运营博客网站源码下载

(自适应手机端)响应式新闻博客知识类pbootcms网站模板 自媒体运营博客网站源码下载 带后台系统PbootCMS内核开发的网站模板&#xff0c;该模板适用于新闻博客网站、自媒体运营网站等企业&#xff0c;当然其他行业也可以做&#xff0c;只需要把文字图片换成其他行业的即可&#…...

SystemC入门完整编写示例:全加器测试平台

导读: 本文将完整演示基于systemC编写一个全加器的测试平台。具体内容包括&#xff1a;激励平台&#xff0c;监控平台&#xff0c;待测单元的编写&#xff0c;波形文件读取。 1&#xff0c;main函数模块 搭建一个测试平台主要由&#xff1a;Driver, Monitor, DUT(design under …...

动手学深度学习:2.线性回归pytorch实现

动手学深度学习&#xff1a;2.线性回归pytorch实现 1.手动构造数据集2.小批量读取数据集3.定义模型和损失函数4.初始化模型参数5.小批量随机梯度下降优化算法6.训练完整代码Q&A 1.手动构造数据集 import torch from torch.utils import data from d2l import torch as d2l…...

重要的linux指令

系统管理命令 切换用户 su 用户名管理员身份运行 sudo 命令实时显示进程信息(linux下任务管理器) top查看进程信息(ps) ps -efps -ef | grep 进程名 ps -aux | grep 进程名参数说明e 显示所有进程f 全格式a 显示所有程序u 以用户为主的格式来显示程序状况x 显示无控制终端…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...