当前位置: 首页 > news >正文

Hive查询中的优化

目录

  • 前言
  • 优化策略
    • 推荐使用group by代替distinct去重

前言

优化策略

推荐使用group by代替distinct去重

参考:

  • hive中groupby和distinct区别以及性能比较 - cnblogs
  • 数据倾斜之count(distinct) - cnblogs

重要结论: 两者都会在map阶段count,但reduce阶段,distinct只有一个, group by 可以有多个进行并行聚合,所以group by会快。

distinct 只生成一个reducer任务,所有的id都聚集到同一个reducer任务进行去重然后在聚合,非常容易造成数据倾斜。distinct耗费内存,可能产生OOM,但效率高。
group by 将数据分组到了多个reducer上进行处理,所以较快。groupby排序消耗时间更多,在时间复杂度允许下,空间复杂度更低。

例子:
在一个具有5,563,985,064个记录的hive表中,对其中的两个字段进行查询,耗时如下:

-- 耗时00:11:17
select col1,col2
from 库名xxx.表名xxx
where ds=20230224
group by col1,col2;-- 耗时00:25:07
select distinct col1,col2
from 库名xxx.表名xxx where ds=20230224;

【其他优化策略待更新】

相关文章:

Hive查询中的优化

目录前言优化策略推荐使用group by代替distinct去重前言 优化策略 推荐使用group by代替distinct去重 参考: hive中groupby和distinct区别以及性能比较 - cnblogs数据倾斜之count(distinct) - cnblogs 重要结论: 两者都会在map阶段count&#xff0c…...

【开发规范】go项目开发中的[流程,git,代码,目录,微服务仓库管理,静态检查]

文章目录前言一、有哪些规范我们应该遵循二、项目开发流程三、git的代码分支管理1. 分支管理2. commit规范三、go的代码规范四、go项目目录规范五、微服务该采用multi-repo还是mono-repo?1. 引言2. Repos 是什么?3. 什么是 Mono-repo?4. Mono-repo 的劣势5. 什么是…...

数组初始化方式与decimal.InvalidOperation

数组初始化方式与decimal.InvalidOperation调用函数主函数: 数组声明不同带来的报错与否1. 报错decimal.InvalidOperation的数组初始化版本2. 可行的初始化版本输出结果1. 报错时的内容2. 正常的输出计算结果原因(是否是数组与列表不同引起(?…...

【Opencv-python】之入门安装

目录 一、安装Python 1. 登录官网https://www.python.org/downloads/ 2. 任选一个版本,下载Python 3. 安装Python 记得勾选下图的Add Python 3.6 PATH, 添加python到环境变量的路径,然后选择Install now​编辑 4. 验证是否安装成功 5.退出 二、安装…...

MySQL进阶(二)

目录 1、视图 1、检查选项 2、视图的更新 3、视图作用 2、存储过程 1、语法 2、变量 1、系统变量 2、用户定义变量 3、局部变量 3、if 4、参数 5、case 6、循环 1、while 2、repeat 3、loop 7、游标、条件处理程序 8、存储函数 3、触发器 4、锁 1、全局锁 2、表级锁 …...

热爱所有热爱

想成为这样的一个人,在工作中是一名充满极客精神的Programmer,处理遇到的问题能够游刃有余,能够做出优雅的设计,写出一手优秀的代码,还有着充分的学习能力和业务能力,做一名职场中的佼佼者。 在工作之余还能…...

Redis学习之数据删除与淘汰策略(七)

这里写目录标题一、Redis数据特征二、过期数据三、过期数据删除策略3.1 数据删除策略的目标3.2 定时删除3.3 惰性删除3.4 定期删除3.5 删除策略对比3.6 实际应用四、数据淘汰策略4.1 淘汰策略概述4.2 策略配置一、Redis数据特征 Redis是一种内存级数据库,所有的数据…...

HashMap 面试专题

1、HashMap 的底层结构 ①JDK1.8 以前 JDK1.8 之前 HashMap 底层是 数组和链表 结合在一起使用也就是 链表散列。HashMap 通过 key 的hashCode 函数处理过后得到 hash 值,然后通过 (n - 1) & hash 判断当前元素存放的位置(这里的 n 指的是数组的长度…...

域组策略自动更新实验报告

域组策略自动更新实验报告 域组策略自动更新实验报告 作者: 高兴源 1要求、我公司为了完善员工的安全性和系统正常漏洞的维护,所以采用域组策略自动更新的方法来提高账户安全性,减少了用户的错误。 1.实验环境如下1台2008r2一台创建域,一台wi…...

Java自定义生成二维码(兼容你所有的需求)

1、概述作为Java开发人员,说到生成二维码就会想到zxing开源二维码图像处理库,不可否认的是zxing确实很强大,但是实际需求中会遇到各种各样的需求是zxing满足不了的,于是就有了想法自己扩展zxing满足历史遇到的各种需求&#xff0c…...

Spring事务的隔离级别

事务隔离级别解决的是多个事务同时调⽤⼀个数据库的问题 事务传播机制解决的是⼀个事务在多个节点(⽅法)中传递的问题 事务的特性: 隔离性:多个事务在并发执行的时候,多个事务执行的一个行为模式,当一个事务执行的时候,另一个事务执行的一个行…...

JVM系统优化实践(4):以支付系统为例

您好,我是湘王,这是我的CSDN博客,欢迎您来,欢迎您再来~前面说过,JVM会将堆内存划分为年轻代、老年代两个区域。年轻代会将创建和使用完之后马上就要回收的对象放在里面,而老年代则将创建之后需要…...

16- TensorFlow实现线性回归和逻辑回归 (TensorFlow系列) (深度学习)

知识要点 线性回归要点: 生成线性数据: x np.linspace(0, 10, 20) np.random.rand(20)画点图: plt.scatter(x, y)TensorFlow定义变量: w tf.Variable(np.random.randn() * 0.02)tensor 转换为 numpy数组: b.numpy()定义优化器: optimizer tf.optimizers.SGD()定义损失: …...

无自动化测试系统设计方法论

灵活 敏捷 迭代。 自动化测试 辩思 测试必不可少 想想看没有充分测试的代码, 哪一次是一次过的? 哪一次不需要经历下测试的鞭挞? 不要以为软件代码容易改, 就对于质量不切实际的自信—那是自大! 不适用自动化测试的case 遗留系统。太多的依赖方, 不想用过多的mock > …...

架构初探-学习笔记

1 什么是架构 有关软件整体结构与组件的抽象描述,用于指导软件系统各个方面的设计。 1.1 单机架构 所有功能都实现在一个进程里,并部署在一台机器上。 1.2 单体架构 分布式部署单机架构 1.3 垂直应用架构 按应用垂直切分的单体架构 1.4 SOA架构 将…...

在成都想转行IT,选择什么专业比较好?

很多创新型的互联网服务公司的核心其实都是软件,创新的基础、运行的支撑都是软件。例如,软件应用到了出租车行业,就形成了巅覆行业的滴滴;软件应用到了金融领域,就形成互联网金融;软件运用到餐饮行业,就形成美团;软件运…...

【Spark分布式内存计算框架——Spark Streaming】4.入门案例(下)Streaming 工作原理

2.3 Streaming 工作原理 SparkStreaming处理流式数据时,按照时间间隔划分数据为微批次(Micro-Batch),每批次数据当做RDD,再进行处理分析。 以上述词频统计WordCount程序为例,讲解Streaming工作原理。 创…...

2、算法先导---思维能力与工具

题目 碎纸片的拼接复原(2013B) 内容 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时…...

WordPress 函数:add_theme_support() 开启主题自定义功能(全面)

add_theme_support() 用于在我们的当前使用的主题添加一些特殊的功能,函数一般写在主题的functions.php文件中,当然也可以再插件中使用钩子来调用该函数,如果是挂在钩子上,那他必须挂在after_setup_theme钩子上,因为 i…...

Winform控件开发(16)——Timer(史上最全)

前言: Timer控件的作用是按用户定义的时间间隔引发事件的计时器,说的直白点就是,他就像一个定时炸弹一样到了一定时间就爆炸一次,区别在于定时炸弹炸完了就不会再次爆炸了,但是Timer这个计时器到了下一个固定时间还会触发一次,上面那张图片就是一个典型的计时器,该定时器…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...