当前位置: 首页 > news >正文

【机器学习】正规方程与梯度下降API及案例预测

正规方程与梯度下降API及案例预测

文章目录

  • 正规方程与梯度下降API及案例预测
    • 1. 正规方程与梯度下降
      • 正规方程(Normal Equation)
      • 梯度下降(Gradient Descent)
    • 2. API
    • 3. 波士顿房价预测

1. 正规方程与梯度下降

回归模型是机器学习中用于预测连续数值(实数)的模型,通常用于解决回归问题。两种常见的回归模型求解方法是正规方程和梯度下降。

正规方程(Normal Equation)

正规方程是一种封闭解法,用于直接计算线性回归模型的权重(系数)。

原理
给定一个线性回归模型的数据集,我们的目标是找到最佳的权重(系数)w,使得模型的预测值尽可能接近实际值。正规方程的原理是通过最小化损失函数来找到最佳权重。对于线性回归问题,损失函数通常是均方误差(Mean Squared Error):
J ( w ) = 1 2 m ∑ i = 1 m ( h w ( x ( i ) ) − y ( i ) ) 2 J(w) = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 J(w)=2m1i=1m(hw(x(i))y(i))2

其中,m 是训练样本数量,
h w ( x ( i ) ) h_w(x^{(i)}) hw(x(i))
是模型的预测值,
y ( i ) y^{(i)} y(i)
是实际值。

正规方程的目标是找到权重w,使损失函数J(w)最小化。通过求解损失函数的梯度等于零的方程,可以得到权重w的解析解:

∇ J ( w ) = 0 \nabla J(w) = 0 J(w)=0

这个方程的解即为最佳权重w,从而得到线性回归模型。

优点

  • 正规方程提供了封闭解,不需要手动选择学习率或迭代次数。
  • 适用于小型数据集,通常在特征数量较少时表现良好。

缺点

  • 对于大型数据集,计算复杂度高,需要计算特征矩阵的逆,时间复杂度较高。
  • 不适用于非线性模型。

梯度下降(Gradient Descent)

梯度下降是一种迭代优化算法,用于调整模型的参数,使损失函数最小化。

原理
梯度下降的核心思想是通过迭代来更新模型参数,使损失函数逐渐减小。对于线性回归,梯度下降的损失函数是均方误差(Mean Squared Error),目标是最小化这个损失函数。

梯度下降的迭代过程如下:

  1. 初始化权重w。
  2. 计算损失函数J(w)关于权重 w w w的梯度
    ∇ J ( w ) \nabla J(w) J(w)
  3. 更新权重w,通常按照以下规则更新:
    w = w − α ∇ J ( w ) w = w - \alpha \nabla J(w) w=wαJ(w)
    ,其中α是学习率,控制每次更新的步长。
  4. 重复步骤2和3,直到满足停止条件(例如,达到最大迭代次数或损失函数收敛)。

梯度下降的关键是学习率α的选择,过大的学习率可能导致算法不收敛,过小的学习率可能导致收敛速度慢。

优点

  • 适用于大型数据集和高维特征,计算复杂度较低。
  • 可以用于各种不同类型的模型和损失函数,包括非线性模型。

缺点

  • 需要手动选择学习率和迭代次数,选择不当可能导致收敛问题或性能下降。
  • 对特征缩放和初始化敏感。

2. API

sklearn.linear_model.LinearRegression(fit_intercept=True)

  • 通过正规方程优化
  • fit_intercept:是否计算偏置
  • LinearRegression.coef_:回归系数
  • LinearRegression.intercept_:偏执

sklearn.linear_model.SGDRegressor(loss=“squared_loss”,fit_intercept=True,learning_rate=“invscaling”,eta0=0.01)

  • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型
  • loss:损失类型
    • loss=“squared_loss”:普通最小二乘法
  • fit_intercept:是否计算偏置
  • learning_rate:string,optional
    • 学习率填充
    • “constant”:eta=eta0
    • “optimal”:eta=1.0/(alpha*(t+t0))[default]
    • “invscaling”:eta=eta0/pow(t,power_t),power_t存在父类之中
    • 对于一个常数值的学习率来说,可以使用learning_rate=“constant”,并使用eta0来指定学习率
  • SGDRegressor.coef_:回归系数
  • SGDRegressor.intercept_:偏置

3. 波士顿房价预测

  • 实例数量:506,属性数量:13数值型或类别墅,帮助预测的属性
  • 属性信息:
    • CRIM城镇人均犯罪率
    • ZN占地面积超过2.5万平方英尺的住宅用地比例
    • INDUS城镇非零售业务地区的比例
    • CHAS查尔斯河虚拟变量(=1,如果土地在河边;否则是0)
    • NOX一氧化氮浓度(每1000万份)
    • RM平均每居民房数
    • AGE在1940年之前建成的所有者占用单位的比例
    • DIS与五个波士顿就业中心的加权距离
    • RAD辐射状公路的可达性指数
    • TAX每10000美元的全额物业税率
    • PTRATIO城镇师生比例
    • B 1000(Bk-0.63)^2其中Bk是城镇中的黑人比例
    • LSTAT人口中地位较低人群的百分数
    • MEDV以1000美元计算的自由住房的中位数
  • 缺失属性值:无

流程:

  • 获取数据集
  • 划分数据集
  • 特征工程:无量纲化处理–标准化
  • 预估器流程,fit()–>模型:coef_,intercept_
  • 模型评估
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegressiondef linear_demo():"""正规方程的方法对波士顿房价进行预测:return:"""# 1. 获取数据boston = load_boston()# 2. 划分数据集x_train, x_test, y_train,y_test = train_test_split(boston.data, boston.target, random_state= 22)# 3. 标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4. 预估器estimator = LinearRegression()estimator.fit(x_train, y_train)# 5. 得出模型print("权重系数为:\n", estimator.coef_)print("偏置为:\n", estimator.intercept_)# 6. 模型评估y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接对比真实值和预测值:\n", y_test == y_predict)score = estimator.score(x_test, y_test)print("准确率为:\n", score)
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDRegressordef linear_demo():"""梯度下降的方法对波士顿房价进行预测:return:"""# 1. 获取数据boston = load_boston()# 2. 划分数据集x_train, x_test, y_train,y_test = train_test_split(boston.data, boston.target, random_state= 22)# 3. 标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4. 预估器estimator = SGDRegressor()estimator.fit(x_train, y_train)# 5. 得出模型print("权重系数为:\n", estimator.coef_)print("偏置为:\n", estimator.intercept_)# 6. 模型评估y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接对比真实值和预测值:\n", y_test == y_predict)score = estimator.score(x_test, y_test)print("准确率为:\n", score)

相关文章:

【机器学习】正规方程与梯度下降API及案例预测

正规方程与梯度下降API及案例预测 文章目录 正规方程与梯度下降API及案例预测1. 正规方程与梯度下降正规方程(Normal Equation)梯度下降(Gradient Descent) 2. API3. 波士顿房价预测 1. 正规方程与梯度下降 回归模型是机器学习中…...

【SOC基础】单片机学习案例汇总 Part2:蜂鸣器、数码管显示

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...

顶层模块【FPGA】

1顶层模块: 不能像C语言的h文件那样,把io的定义放在其他文件。 在Verilog中,顶层模块是整个设计的最高层次,它包含了所有其他模块和子模块。 顶层模块定义了整个设计的输入和输出端口,以及各个子模块之间的连接方式。…...

IT行业就业分析

1. IT技术发展背景及历程介绍 2. IT行业的就业方向有哪些? IT技术发展背景及历程介绍: IT技术的发展背景和历程可以追溯到上世纪40年代,以下是IT技术的主要发展阶段: 1.计算机的发展:二战期间,计算机作…...

读取用户剪贴板内容

读取用户剪贴板内容 在Web开发中&#xff0c;要读取用户剪贴板的内容&#xff0c;可以使用Clipboard API。这个API提供了一组方法和事件&#xff0c;用于访问和操作用户的剪贴板数据。 HTML <body><button onclick"readClipboard()">读取剪切板内容&l…...

“深入理解Nginx的负载均衡与动静分离“

目录 引言一、Nginx简介1. Nginx的基本概念2. Nginx的特点3. Nginx的安装配置 二、Nginx搭载负载均衡三、前端项目打包四、Nginx部署前后端分离项目&#xff0c;同时实现负载均衡和动静分离总结 引言 在现代互联网应用中&#xff0c;高性能和可扩展性是至关重要的。Nginx作为一…...

JVM 内存和 GC 算法

文章目录 内存布局直接内存执行引擎解释器JIT 即时编译器JIT 分类AOT 静态提前编译器&#xff08;Ahead Of Time Compiler&#xff09; GC什么是垃圾为什么要GC垃圾回收行为Java GC 主要关注的区域对象的 finalization 机制GC 相关算法引用计数算法&#xff08;Reference Count…...

memtest86 prosite v10.6

passmark官方的memtest86 v10开始支持颗粒级别的坏内存芯片定位了&#xff0c;对于特定的若干种CPU和芯片组的组合&#xff0c;支持这项功能。 当然支持颗粒定位的site版本售价4800美金&#xff0c;是比较贵的。所以网络上出现了破解版的&#xff0c;人才真是。但是鼓励大家支…...

Springboot JSP项目如何以war、jar方式运行

文章目录 一&#xff0c;序二&#xff0c;样例代码1&#xff0c;代码结构2&#xff0c;完整代码备份 三&#xff0c;准备工作1. pom.xml 引入组件2. application.yml 指定jsp配置 四&#xff0c;war方式运行1. 修改pom.xml文件2. mvn执行打包 五&#xff0c;jar方式运行1. 修改…...

系统架构设计师(第二版)学习笔记----层次式架构设计理论与实践

【原文链接】系统架构设计师&#xff08;第二版&#xff09;学习笔记----层次式架构设计理论与实践 文章目录 一、层次式体系结构概述1.1 软件体系结构的作用1.2 常用的层次式架构图1.3 层次式体系可能存在的问题点 二、表现层框架设计2.1 MVC模式2.1.1 MVC三层模式2.1.2 MVC设…...

Python之字符串详解

目录 一、字符串1、转义字符与原始字符串2、使用%运算符进行格式化 一、字符串 在Python中&#xff0c;字符串属于不可变、有序序列&#xff0c;使用单引号、双引号、三单引号或三双引号作为定界符&#xff0c;并且不同的定界符之间可以互相嵌套。 ‘abc’、‘123’、‘中国’…...

《视觉SLAM十四讲》-- 概述与预备知识

文章目录 01 概述与预备知识1.1 SLAM 是什么1.1.1 基本概念1.1.2 视觉 SLAM 框架1.1.3 SLAM 问题的数学表述 1.2 实践&#xff1a;编程基基础1.3 课后习题 01 概述与预备知识 1.1 SLAM 是什么 1.1.1 基本概念 &#xff08;1&#xff09;SLAM 是 Simultaneous Localization a…...

Java8 Stream API全面解析——高效流式编程的秘诀

文章目录 什么是 Stream Api?快速入门流的操作创建流中间操作filter 过滤map 数据转换flatMap 合并流distinct 去重sorted 排序limit 限流skip 跳过peek 操作 终结操作forEach 遍历forEachOrdered 有序遍历count 统计数量min 最小值max 最大值reduce 聚合collect 收集anyMatch…...

分享一下微信小程序里怎么开店

如何在微信小程序中成功开店&#xff1a;从选品到运营的全方位指南 一、引言 随着微信小程序的日益普及&#xff0c;越来越多的人开始尝试在微信小程序中开设自己的店铺。微信小程序具有便捷、易用、即用即走等特点&#xff0c;使得开店门槛大大降低。本文将详细介绍如何在微…...

uniapp小程序刮刮乐抽奖

使用canvas画布画出刮刮乐要被刮的图片&#xff0c;使用移动清除画布。 当前代码封装为刮刮乐的组件&#xff1b; vue代码&#xff1a; <template><view class"page" v-if"merchantInfo.cdn_static"><image class"bg" :src&q…...

Qt 窗口无法移出屏幕

1 使用场景 设计一个缩进/展开widget的效果&#xff0c;抽屉效果。 看到实现的方法有定时器里move窗口&#xff0c;或是使用QPropertyAnimation。 setWindowFlags(Qt::Dialog | Qt::FramelessWindowHint |Qt::X11BypassWindowManagerHint&#xff09;&#xff1b; 记得在移…...

java毕业设计基于springboot+vue线上教学辅助系统

项目介绍 本论文主要论述了如何使用JAVA语言开发一个线上教学辅助系统 &#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论述线上教学辅助系统的当前背景以及系统开…...

开源 Wiki 软件 wiki.js

wiki.js简介 最强大、 可扩展的开源Wiki 软件。使用 Wiki.js 美观直观的界面让编写文档成为一种乐趣&#xff01;根据 AGPL-v3 许可证发布。 官方网站&#xff1a;https://js.wiki/ 项目地址&#xff1a;https://github.com/requarks/wiki 主要特性&#xff1a; 随处安装&a…...

STM32基本定时器中断

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、STM32定时器的结构&#xff1f;1. 51定时器的结构1.1如何实现定时1s的功能&#xff1f; 2. stm32定时器的结构2.1 通用定时器 二、使用步骤1.开启时钟2.初始…...

学习历程_基础_精通部分_达到手搓的程度

1. 计算机网络(更新版) 1.1 计算机网络-43题 1.2 2. 操作系统(更新版) 3. ACM算法(更新版) 4. 数据库&#xff08;更新版&#xff09; 5. 业务开发算法&#xff08;更新版&#xff09; 6. 分布式类&#xff08;更新版&#xff09; 7. 设计模式&#xff08;更新版&#xff…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Java - Mysql数据类型对应

Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

shell脚本质数判断

shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数&#xff09;shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数&#xff09; 思路&#xff1a; 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...