当前位置: 首页 > news >正文

【机器学习】正规方程与梯度下降API及案例预测

正规方程与梯度下降API及案例预测

文章目录

  • 正规方程与梯度下降API及案例预测
    • 1. 正规方程与梯度下降
      • 正规方程(Normal Equation)
      • 梯度下降(Gradient Descent)
    • 2. API
    • 3. 波士顿房价预测

1. 正规方程与梯度下降

回归模型是机器学习中用于预测连续数值(实数)的模型,通常用于解决回归问题。两种常见的回归模型求解方法是正规方程和梯度下降。

正规方程(Normal Equation)

正规方程是一种封闭解法,用于直接计算线性回归模型的权重(系数)。

原理
给定一个线性回归模型的数据集,我们的目标是找到最佳的权重(系数)w,使得模型的预测值尽可能接近实际值。正规方程的原理是通过最小化损失函数来找到最佳权重。对于线性回归问题,损失函数通常是均方误差(Mean Squared Error):
J ( w ) = 1 2 m ∑ i = 1 m ( h w ( x ( i ) ) − y ( i ) ) 2 J(w) = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2 J(w)=2m1i=1m(hw(x(i))y(i))2

其中,m 是训练样本数量,
h w ( x ( i ) ) h_w(x^{(i)}) hw(x(i))
是模型的预测值,
y ( i ) y^{(i)} y(i)
是实际值。

正规方程的目标是找到权重w,使损失函数J(w)最小化。通过求解损失函数的梯度等于零的方程,可以得到权重w的解析解:

∇ J ( w ) = 0 \nabla J(w) = 0 J(w)=0

这个方程的解即为最佳权重w,从而得到线性回归模型。

优点

  • 正规方程提供了封闭解,不需要手动选择学习率或迭代次数。
  • 适用于小型数据集,通常在特征数量较少时表现良好。

缺点

  • 对于大型数据集,计算复杂度高,需要计算特征矩阵的逆,时间复杂度较高。
  • 不适用于非线性模型。

梯度下降(Gradient Descent)

梯度下降是一种迭代优化算法,用于调整模型的参数,使损失函数最小化。

原理
梯度下降的核心思想是通过迭代来更新模型参数,使损失函数逐渐减小。对于线性回归,梯度下降的损失函数是均方误差(Mean Squared Error),目标是最小化这个损失函数。

梯度下降的迭代过程如下:

  1. 初始化权重w。
  2. 计算损失函数J(w)关于权重 w w w的梯度
    ∇ J ( w ) \nabla J(w) J(w)
  3. 更新权重w,通常按照以下规则更新:
    w = w − α ∇ J ( w ) w = w - \alpha \nabla J(w) w=wαJ(w)
    ,其中α是学习率,控制每次更新的步长。
  4. 重复步骤2和3,直到满足停止条件(例如,达到最大迭代次数或损失函数收敛)。

梯度下降的关键是学习率α的选择,过大的学习率可能导致算法不收敛,过小的学习率可能导致收敛速度慢。

优点

  • 适用于大型数据集和高维特征,计算复杂度较低。
  • 可以用于各种不同类型的模型和损失函数,包括非线性模型。

缺点

  • 需要手动选择学习率和迭代次数,选择不当可能导致收敛问题或性能下降。
  • 对特征缩放和初始化敏感。

2. API

sklearn.linear_model.LinearRegression(fit_intercept=True)

  • 通过正规方程优化
  • fit_intercept:是否计算偏置
  • LinearRegression.coef_:回归系数
  • LinearRegression.intercept_:偏执

sklearn.linear_model.SGDRegressor(loss=“squared_loss”,fit_intercept=True,learning_rate=“invscaling”,eta0=0.01)

  • SGDRegressor类实现了随机梯度下降学习,它支持不同的loss函数和正则化惩罚项来拟合线性回归模型
  • loss:损失类型
    • loss=“squared_loss”:普通最小二乘法
  • fit_intercept:是否计算偏置
  • learning_rate:string,optional
    • 学习率填充
    • “constant”:eta=eta0
    • “optimal”:eta=1.0/(alpha*(t+t0))[default]
    • “invscaling”:eta=eta0/pow(t,power_t),power_t存在父类之中
    • 对于一个常数值的学习率来说,可以使用learning_rate=“constant”,并使用eta0来指定学习率
  • SGDRegressor.coef_:回归系数
  • SGDRegressor.intercept_:偏置

3. 波士顿房价预测

  • 实例数量:506,属性数量:13数值型或类别墅,帮助预测的属性
  • 属性信息:
    • CRIM城镇人均犯罪率
    • ZN占地面积超过2.5万平方英尺的住宅用地比例
    • INDUS城镇非零售业务地区的比例
    • CHAS查尔斯河虚拟变量(=1,如果土地在河边;否则是0)
    • NOX一氧化氮浓度(每1000万份)
    • RM平均每居民房数
    • AGE在1940年之前建成的所有者占用单位的比例
    • DIS与五个波士顿就业中心的加权距离
    • RAD辐射状公路的可达性指数
    • TAX每10000美元的全额物业税率
    • PTRATIO城镇师生比例
    • B 1000(Bk-0.63)^2其中Bk是城镇中的黑人比例
    • LSTAT人口中地位较低人群的百分数
    • MEDV以1000美元计算的自由住房的中位数
  • 缺失属性值:无

流程:

  • 获取数据集
  • 划分数据集
  • 特征工程:无量纲化处理–标准化
  • 预估器流程,fit()–>模型:coef_,intercept_
  • 模型评估
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegressiondef linear_demo():"""正规方程的方法对波士顿房价进行预测:return:"""# 1. 获取数据boston = load_boston()# 2. 划分数据集x_train, x_test, y_train,y_test = train_test_split(boston.data, boston.target, random_state= 22)# 3. 标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4. 预估器estimator = LinearRegression()estimator.fit(x_train, y_train)# 5. 得出模型print("权重系数为:\n", estimator.coef_)print("偏置为:\n", estimator.intercept_)# 6. 模型评估y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接对比真实值和预测值:\n", y_test == y_predict)score = estimator.score(x_test, y_test)print("准确率为:\n", score)
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import SGDRegressordef linear_demo():"""梯度下降的方法对波士顿房价进行预测:return:"""# 1. 获取数据boston = load_boston()# 2. 划分数据集x_train, x_test, y_train,y_test = train_test_split(boston.data, boston.target, random_state= 22)# 3. 标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4. 预估器estimator = SGDRegressor()estimator.fit(x_train, y_train)# 5. 得出模型print("权重系数为:\n", estimator.coef_)print("偏置为:\n", estimator.intercept_)# 6. 模型评估y_predict = estimator.predict(x_test)print("y_predict:\n", y_predict)print("直接对比真实值和预测值:\n", y_test == y_predict)score = estimator.score(x_test, y_test)print("准确率为:\n", score)

相关文章:

【机器学习】正规方程与梯度下降API及案例预测

正规方程与梯度下降API及案例预测 文章目录 正规方程与梯度下降API及案例预测1. 正规方程与梯度下降正规方程(Normal Equation)梯度下降(Gradient Descent) 2. API3. 波士顿房价预测 1. 正规方程与梯度下降 回归模型是机器学习中…...

【SOC基础】单片机学习案例汇总 Part2:蜂鸣器、数码管显示

📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...

顶层模块【FPGA】

1顶层模块: 不能像C语言的h文件那样,把io的定义放在其他文件。 在Verilog中,顶层模块是整个设计的最高层次,它包含了所有其他模块和子模块。 顶层模块定义了整个设计的输入和输出端口,以及各个子模块之间的连接方式。…...

IT行业就业分析

1. IT技术发展背景及历程介绍 2. IT行业的就业方向有哪些? IT技术发展背景及历程介绍: IT技术的发展背景和历程可以追溯到上世纪40年代,以下是IT技术的主要发展阶段: 1.计算机的发展:二战期间,计算机作…...

读取用户剪贴板内容

读取用户剪贴板内容 在Web开发中&#xff0c;要读取用户剪贴板的内容&#xff0c;可以使用Clipboard API。这个API提供了一组方法和事件&#xff0c;用于访问和操作用户的剪贴板数据。 HTML <body><button onclick"readClipboard()">读取剪切板内容&l…...

“深入理解Nginx的负载均衡与动静分离“

目录 引言一、Nginx简介1. Nginx的基本概念2. Nginx的特点3. Nginx的安装配置 二、Nginx搭载负载均衡三、前端项目打包四、Nginx部署前后端分离项目&#xff0c;同时实现负载均衡和动静分离总结 引言 在现代互联网应用中&#xff0c;高性能和可扩展性是至关重要的。Nginx作为一…...

JVM 内存和 GC 算法

文章目录 内存布局直接内存执行引擎解释器JIT 即时编译器JIT 分类AOT 静态提前编译器&#xff08;Ahead Of Time Compiler&#xff09; GC什么是垃圾为什么要GC垃圾回收行为Java GC 主要关注的区域对象的 finalization 机制GC 相关算法引用计数算法&#xff08;Reference Count…...

memtest86 prosite v10.6

passmark官方的memtest86 v10开始支持颗粒级别的坏内存芯片定位了&#xff0c;对于特定的若干种CPU和芯片组的组合&#xff0c;支持这项功能。 当然支持颗粒定位的site版本售价4800美金&#xff0c;是比较贵的。所以网络上出现了破解版的&#xff0c;人才真是。但是鼓励大家支…...

Springboot JSP项目如何以war、jar方式运行

文章目录 一&#xff0c;序二&#xff0c;样例代码1&#xff0c;代码结构2&#xff0c;完整代码备份 三&#xff0c;准备工作1. pom.xml 引入组件2. application.yml 指定jsp配置 四&#xff0c;war方式运行1. 修改pom.xml文件2. mvn执行打包 五&#xff0c;jar方式运行1. 修改…...

系统架构设计师(第二版)学习笔记----层次式架构设计理论与实践

【原文链接】系统架构设计师&#xff08;第二版&#xff09;学习笔记----层次式架构设计理论与实践 文章目录 一、层次式体系结构概述1.1 软件体系结构的作用1.2 常用的层次式架构图1.3 层次式体系可能存在的问题点 二、表现层框架设计2.1 MVC模式2.1.1 MVC三层模式2.1.2 MVC设…...

Python之字符串详解

目录 一、字符串1、转义字符与原始字符串2、使用%运算符进行格式化 一、字符串 在Python中&#xff0c;字符串属于不可变、有序序列&#xff0c;使用单引号、双引号、三单引号或三双引号作为定界符&#xff0c;并且不同的定界符之间可以互相嵌套。 ‘abc’、‘123’、‘中国’…...

《视觉SLAM十四讲》-- 概述与预备知识

文章目录 01 概述与预备知识1.1 SLAM 是什么1.1.1 基本概念1.1.2 视觉 SLAM 框架1.1.3 SLAM 问题的数学表述 1.2 实践&#xff1a;编程基基础1.3 课后习题 01 概述与预备知识 1.1 SLAM 是什么 1.1.1 基本概念 &#xff08;1&#xff09;SLAM 是 Simultaneous Localization a…...

Java8 Stream API全面解析——高效流式编程的秘诀

文章目录 什么是 Stream Api?快速入门流的操作创建流中间操作filter 过滤map 数据转换flatMap 合并流distinct 去重sorted 排序limit 限流skip 跳过peek 操作 终结操作forEach 遍历forEachOrdered 有序遍历count 统计数量min 最小值max 最大值reduce 聚合collect 收集anyMatch…...

分享一下微信小程序里怎么开店

如何在微信小程序中成功开店&#xff1a;从选品到运营的全方位指南 一、引言 随着微信小程序的日益普及&#xff0c;越来越多的人开始尝试在微信小程序中开设自己的店铺。微信小程序具有便捷、易用、即用即走等特点&#xff0c;使得开店门槛大大降低。本文将详细介绍如何在微…...

uniapp小程序刮刮乐抽奖

使用canvas画布画出刮刮乐要被刮的图片&#xff0c;使用移动清除画布。 当前代码封装为刮刮乐的组件&#xff1b; vue代码&#xff1a; <template><view class"page" v-if"merchantInfo.cdn_static"><image class"bg" :src&q…...

Qt 窗口无法移出屏幕

1 使用场景 设计一个缩进/展开widget的效果&#xff0c;抽屉效果。 看到实现的方法有定时器里move窗口&#xff0c;或是使用QPropertyAnimation。 setWindowFlags(Qt::Dialog | Qt::FramelessWindowHint |Qt::X11BypassWindowManagerHint&#xff09;&#xff1b; 记得在移…...

java毕业设计基于springboot+vue线上教学辅助系统

项目介绍 本论文主要论述了如何使用JAVA语言开发一个线上教学辅助系统 &#xff0c;本系统将严格按照软件开发流程进行各个阶段的工作&#xff0c;采用B/S架构&#xff0c;面向对象编程思想进行项目开发。在引言中&#xff0c;作者将论述线上教学辅助系统的当前背景以及系统开…...

开源 Wiki 软件 wiki.js

wiki.js简介 最强大、 可扩展的开源Wiki 软件。使用 Wiki.js 美观直观的界面让编写文档成为一种乐趣&#xff01;根据 AGPL-v3 许可证发布。 官方网站&#xff1a;https://js.wiki/ 项目地址&#xff1a;https://github.com/requarks/wiki 主要特性&#xff1a; 随处安装&a…...

STM32基本定时器中断

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、STM32定时器的结构&#xff1f;1. 51定时器的结构1.1如何实现定时1s的功能&#xff1f; 2. stm32定时器的结构2.1 通用定时器 二、使用步骤1.开启时钟2.初始…...

学习历程_基础_精通部分_达到手搓的程度

1. 计算机网络(更新版) 1.1 计算机网络-43题 1.2 2. 操作系统(更新版) 3. ACM算法(更新版) 4. 数据库&#xff08;更新版&#xff09; 5. 业务开发算法&#xff08;更新版&#xff09; 6. 分布式类&#xff08;更新版&#xff09; 7. 设计模式&#xff08;更新版&#xff…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...