【C语言:函数栈帧的创建与销毁】
文章目录
- 前言
- 一、前期准备
- 1.寄存器
- 2.汇编指令
- 3.测试代码
- 二、解开函数栈帧的神秘面纱
- 1.栈帧大体轮廓
- 2.main函数栈帧的创建
- 3.main函数内执行有效代码
- 4.烫烫烫
- 5.函数参数的传递
- 6.add函数栈帧的创建
- 7.add函数内执行有效代码
- 8.add是如何获得参数的
- 9. add函数栈帧的销毁
- 10.main函数栈帧的销毁
- 三、总结
前言
学习过C语言后,你是否有一下疑问
- 局部变量在内存中是如何创建?
- 变量不初始化为什么是随机值?
- 函数是如何传参的?顺序是什么?
- 形参和实参是什么关系?
- 函数是如何调用以及返回的?
- 烫烫烫烫烫是怎么打印出来的呢?
带着这些疑问,我们来学习下面的知识:
一、前期准备
1.寄存器
| 名称 | 介绍 |
|---|---|
| eax | “累加器” 它是很多加法乘法指令的缺省寄存器。 |
| ebx | 基地址"寄存器, 在内存寻址时存放基地址 |
| ecx | 计数器,是重复(REP)前缀指令和LOOP指令的内定计数器。 |
| edx | 总是被用来放整数除法产生的余数。 |
| esi | 源索引寄存器 |
| edi | 目标索引寄存器 |
| ebp | “基址指针”,存放的是地址,用来维护函数栈帧(栈底指针) |
| esp | 专门用作堆栈指针,存放的是地址,用来维护函数栈帧(栈顶指针) |
相信学过微机原理的同学都应该了解这些,我们今天会重点使用这两个寄存器。
2.汇编指令
接下来还有一些汇编代码的含义:
- lea:Load effective address的缩写,取有效地址
- call:用于调用其他函数
- mov:数据传送指令,用于将一个数据从源地址传送到目标地址
- sub:减法,
- add:加法
- pop:出栈
- push:入栈或压栈
3.测试代码
#include<stdio.h>
int add(int x, int y)
{int z = 0;z = x + y;return z;
}int main()
{int a = 10;int b = 20;int c = 0;c = add(a,b);printf("%d\n", c);return 0;
}
二、解开函数栈帧的神秘面纱
1.栈帧大体轮廓
学习过C语言的函数我们都知道,每一次的函数调用就会在内存中(栈区)创建一个空间。
main函数也是被调用的,但是谁来调用main函数呢?在VS2013中,通过调试我们可以发现


main函数被 __tmainCRTStartup() 调用
而 __tmainCRTStartup() 又被 mainCRTStartup() 调用,栈区一般是从高地址向低地址使用的所以我们可以画出下图:

2.main函数栈帧的创建
我们F10调试起来,然后转到反汇编就可以观察main函数是怎么执行的

首先,我们应该明白,在进入main函数之前。我们内存中应该是这样布局的:

然后我们进入main函数,执行汇编代码
- push ebp 进行压栈,ebp 在 __tmainCRTStartup() 上面压栈,我们通过监视和内存可以看到
esp地址减少了4个字节,并且内存中也有了ebp


- 接下来是 mov ebp,esp ,将esp的值传入ebp中(即将ebp指针移动到esp指向的位置),可以看到ebp的地址发生了变化

- 在继续执行 sub esp,0E4h,将esp的内容减去0E4h(将esp移动到原esp-0E4h的位置,esp-0E4h地址减小),esp的地址变小了,说明往上走了。
- 此时esp与ebp指向了另一块空间,正是为main函数开辟了栈帧


- 此时,又执行了三句push 代码,esp的地址依旧减小




- 接下来,执行 lea edi,[ebp-0E4h],把 ebp - 0E4h 这个地址加载到 edi 里(建议使用vs2013,其它编译器版本太高,可能不会这样,)
- 这个0E4h是不是有点熟悉,我们的esp是不是也减过0E4h,所以我们的edi中放的就是esp在三次push之前的位置

接下来,执行一下代码
mov ecx,9,
mov eax,0CCCCCCCCh
rep stos dword ptr es:[edi]
这三句代码是什么意思呢?
就是从edi位置开始,ecx这么多的空间(9行的空间),全部初始化为0CCCCCCCC


到这为止,main函数的栈帧就创建好了
3.main函数内执行有效代码
接下来,机器才开始执行我们在main函数中书写的代码

- mov dword ptr [ebp-8],0Ah ,把 0Ah(十进制为10) 放到 ebp-8 的位置
- mov dword ptr [ebp-14h],14h ,把 14h(20) 放到 ebp-14h的位置
- mov dword ptr [ebp-20h],0 ,把 0 放到 ebp-20h的位置
执行前:

执行后:

也就是

4.烫烫烫
此时,如果我们的变量未初始化,它里面存放的就是CCCCCCCC,那么你把他打印出来,是不是就是我们的随机值(烫烫烫烫烫)呢?很显然就是这个原因
5.函数参数的传递
add函数又是怎么创建的呢?我们继续执行代码

- eax,dword ptr [ebp-14],这句代码就是将我们的20放进eax中
- push eax, ,然后push eax
- eax,dword ptr [ebp-8],这句代码就是将我们的20放进ecx中
- 然后push ecx
这几句代码好像是在传递参数,可我们的add函数的栈帧还没有创建,那是在传参吗?----确实是在传参



6.add函数栈帧的创建
按 F11,进入到 Add 函数 ,该add 函数地址不一定与main 函数地址相连,但是add 函数的地址一定在main 函数地址上面

执行call指令后,我们发现它里面放的是一个地址——006118f7

仔细观察我们发现,这个地址就是call指令下一条指令的地址。那它记这个地址干什么呢?-----add函数调用完,回到call指令的下一条指令位置继续执行下面的代码

接下来,机器继续执行以下代码,和main函数栈帧创建时一样,这里就不在赘述了



7.add函数内执行有效代码

此时,c被设置为0


8.add是如何获得参数的
0061187C mov eax,dword ptr [ebp+8]
//将ebp+8位置的值放进eax ,eax=10
0061187F add eax,dword ptr [ebp+0Ch]
//eax再加上ebp+12位置的值 ,eax =eax + 20 = 30
00611882 mov dword ptr [ebp-8],eax
//再将eax放到ebp-8位置

这里我们发现,函数的参数是在栈中找到的我们之前压进栈中的值,其实我的add函数压根就没有去找a,b。这更加证实了形参是实参的一份临时拷贝
此时,已经算出了结果,我们是怎么返回的呢?
00611885 mov eax,dword ptr [ebp-8]
将ebp-8位置的值放进eax寄存器中,add函数结束z的值就销毁了,但是寄存器不会销毁,刚好可以带回我们的值。
9. add函数栈帧的销毁
执行pop弹出栈,esp地址增大





执行这两句代码。esp移动到ebp位置。ebp移动到以前的ebp位置,esp再pop一次

执行最后一条ret指令,此时该位置刚好是call指令的下一条指令的地址。
10.main函数栈帧的销毁

再执行esp+8,即向高位移动,实际上这条指令就是在销毁我们的形参

此时,再执行 006118FA mov dword ptr [ebp-20h],eax ----将eax中的值放在ebp-20(c)中,而eax中刚好又放的是我们add函数执行的结果
接下来就是打印值
销毁eax中的值
main函数函数栈帧销毁,都与上面类似,这里不多做赘述
三、总结
- 局部变量在内存中是如何创建?
首先为这个函数分配好栈帧空间,并初始化一部分空间为CCCCCCCC,再为局部变量分配空间并初始化
- 变量不初始化为什么是随机值?
因为是在栈帧创建时的随机初始化为CCCCCCCC
- 函数是如何传参的?顺序是什么?
在调用函数前,形参已经被压入到栈中。进入函数后,通过指针偏移找到参数
- 形参和实参是什么关系?
形参是实参的一份临时拷贝
- 函数是如何调用以及返回的?
函数会在调用前就记住,调用位置下一条指令的地址,调用结束后,直接回到调用位置下一条指令
- 烫烫烫烫烫是怎么打印出来的呢?
还是因为栈帧创建时的随机初始化为CCCCCCCC
如有错误,请大佬指正!
相关文章:
【C语言:函数栈帧的创建与销毁】
文章目录 前言一、前期准备1.寄存器2.汇编指令3.测试代码 二、解开函数栈帧的神秘面纱1.栈帧大体轮廓2.main函数栈帧的创建3.main函数内执行有效代码4.烫烫烫5.函数参数的传递6.add函数栈帧的创建7.add函数内执行有效代码8.add是如何获得参数的9. add函数栈帧的销毁10.main函数…...
怎么在C++中实现云端存储变量
随着云计算技术的快速发展,现在我们可以将数据存储在云端,以便于在不同设备和地点访问。在C中,我们也可以通过一些方法来实现这个功能。本文将详细介绍如何在C中实现云端存储变量。 首先,我们需要理解,C本身并没有直接…...
短视频矩阵营销系统工具如何助力商家企业获客?
1.批量剪辑技术研发 做的数学建模算法,数学阶乘的组合乘组形式,采用两套查重机制,一套针对素材进行查重抽帧素材,一套针对成片进行抽帧素材打分制度查重,自动滤重计入打分。 2.账号矩阵分发开发 多平台,…...
PCL 计算一个平面与包围盒体素的相交线
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 基于之前计算的包围盒体素(PCL 包围盒体素化显示),这里使用一个平面与其进行相交,并求出与其中体素单元的相交线。 二、实现代码 //标准文件 #include <iostream> #include <thread>//PCL...
面向教育的计算机视觉和深度学习5
面向教育的计算机视觉和深度学习5 1. 好处智能内容(Smart Content)任务自动化(Task Automation)缩小技能差距(Closing Skill Gap) 2. 应用程序学生学习与福利(Student Learning and Welfare&…...
FPGA芯片内部结构
参考链接:FPGA的进阶之第二章FPGA芯片内部结构(2)...
人工智能AI创作系统ChatGPT网站系统源码+AI绘画系统支持GPT4.0/支持Midjourney局部重绘
一、前言 SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建…...
Google 开源项目风格指南
目录 C 风格指南 Objective-C 风格指南 Python 风格指南 Shell 风格指南 TypeScript 风格指南 Javascript 风格指南 HTML/CSS 风格指南 C 风格指南 C 风格指南 - 内容目录 — Google 开源项目风格指南 Objective-C 风格指南 Objective-C 风格指南 - 内容目录 — Googl…...
无限上下文,多级内存管理!突破ChatGPT等大语言模型上下文限制
目前,ChatGPT、Llama 2、文心一言等主流大语言模型,因技术架构的问题上下文输入一直受到限制,即便是Claude 最多只支持10万token输入,这对于解读上百页报告、书籍、论文来说非常不方便。 为了解决这一难题,加州伯克利…...
学习剑指jvm
一直弱,jvm 1、主要解决运行状态的线上系统突然卡死,造成系统无法访问,甚至直接内存溢出异常(Out of Memory,OOM) 2、希望解决线上JVM垃圾回收的相关问题,但无从下手。 3、新项目上线,对设置…...
java网络通信
浏览器中输入:“www.woaijava.com”之后都发生了什么? 请详细阐述 由域名→IP地址 寻找IP地址的过程依次经过了浏览器缓存、系统缓存、hosts文件、路由器缓存、 递归搜索根域名服务器。 建立TCP/IP连接(三次握手具体过程) 由浏览…...
Three.js之加载外部三维模型
参考资料 建模软件绘制3D场景…加载.gltf文件(模型加载全流程) 知识点 注:基于Three.jsv0.155.0 三维建模软件gltf格式加载.gltf文件 三维建模软件 D美术常用的三维建模软件,比如Blender、3dmax、C4D、maya等等 Blender(轻量开源)3dmaxC4Dmaya 特…...
【机器学习】正规方程与梯度下降API及案例预测
正规方程与梯度下降API及案例预测 文章目录 正规方程与梯度下降API及案例预测1. 正规方程与梯度下降正规方程(Normal Equation)梯度下降(Gradient Descent) 2. API3. 波士顿房价预测 1. 正规方程与梯度下降 回归模型是机器学习中…...
【SOC基础】单片机学习案例汇总 Part2:蜂鸣器、数码管显示
📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...
顶层模块【FPGA】
1顶层模块: 不能像C语言的h文件那样,把io的定义放在其他文件。 在Verilog中,顶层模块是整个设计的最高层次,它包含了所有其他模块和子模块。 顶层模块定义了整个设计的输入和输出端口,以及各个子模块之间的连接方式。…...
IT行业就业分析
1. IT技术发展背景及历程介绍 2. IT行业的就业方向有哪些? IT技术发展背景及历程介绍: IT技术的发展背景和历程可以追溯到上世纪40年代,以下是IT技术的主要发展阶段: 1.计算机的发展:二战期间,计算机作…...
读取用户剪贴板内容
读取用户剪贴板内容 在Web开发中,要读取用户剪贴板的内容,可以使用Clipboard API。这个API提供了一组方法和事件,用于访问和操作用户的剪贴板数据。 HTML <body><button onclick"readClipboard()">读取剪切板内容&l…...
“深入理解Nginx的负载均衡与动静分离“
目录 引言一、Nginx简介1. Nginx的基本概念2. Nginx的特点3. Nginx的安装配置 二、Nginx搭载负载均衡三、前端项目打包四、Nginx部署前后端分离项目,同时实现负载均衡和动静分离总结 引言 在现代互联网应用中,高性能和可扩展性是至关重要的。Nginx作为一…...
JVM 内存和 GC 算法
文章目录 内存布局直接内存执行引擎解释器JIT 即时编译器JIT 分类AOT 静态提前编译器(Ahead Of Time Compiler) GC什么是垃圾为什么要GC垃圾回收行为Java GC 主要关注的区域对象的 finalization 机制GC 相关算法引用计数算法(Reference Count…...
memtest86 prosite v10.6
passmark官方的memtest86 v10开始支持颗粒级别的坏内存芯片定位了,对于特定的若干种CPU和芯片组的组合,支持这项功能。 当然支持颗粒定位的site版本售价4800美金,是比较贵的。所以网络上出现了破解版的,人才真是。但是鼓励大家支…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
前端高频面试题2:浏览器/计算机网络
本专栏相关链接 前端高频面试题1:HTML/CSS 前端高频面试题2:浏览器/计算机网络 前端高频面试题3:JavaScript 1.什么是强缓存、协商缓存? 强缓存: 当浏览器请求资源时,首先检查本地缓存是否命中。如果命…...
用递归算法解锁「子集」问题 —— LeetCode 78题解析
文章目录 一、题目介绍二、递归思路详解:从决策树开始理解三、解法一:二叉决策树 DFS四、解法二:组合式回溯写法(推荐)五、解法对比 递归算法是编程中一种非常强大且常见的思想,它能够优雅地解决很多复杂的…...
用 FFmpeg 实现 RTMP 推流直播
RTMP(Real-Time Messaging Protocol) 是直播行业中常用的传输协议。 一般来说,直播服务商会给你: ✅ 一个 RTMP 推流地址(你推视频上去) ✅ 一个 HLS 或 FLV 拉流地址(观众观看用)…...
