无限上下文,多级内存管理!突破ChatGPT等大语言模型上下文限制
目前,ChatGPT、Llama 2、文心一言等主流大语言模型,因技术架构的问题上下文输入一直受到限制,即便是Claude 最多只支持10万token输入,这对于解读上百页报告、书籍、论文来说非常不方便。
为了解决这一难题,加州伯克利分校受操作系统的内存管理机制启发,提出了MemGPT。该模型的最大创新是模仿操作系统的多级内存管理机制,通过数据在不同的内存层级之间的传输,来打破大语言模型固定上下文的限定。
开源地址:https://github.com/cpacker/MemGPT
论文:https://arxiv.org/abs/2310.08560
MemGPT主要包含主上下文和外部上下文两大内存类型。主上下文相当于操作系统的主内存,是大语言模型可以直接访问的固定长度上下文窗口。
外部上下文则相当于磁盘存储,保存了主上下文之外的额外信息。MemGPT还提供了丰富的功能调用,允许大语言模型主动管理自己的内存而无需人工干预。
这些功能调用可以将信息在主上下文和外部上下文之间进行导入导出。大语言模型可以根据当前任务目标,自主决定何时移动上下文信息以更好利用有限的主上下文资源。
研究人员在多个测试环境中进行了评估,结果表明,MemGPT可以有效处理远超大语言模型上下文长度限制的文本内容,例如,MemGPT可以处理长度远超过GPT-3.5和GPT-4上下文限制的文档。
当取回的文档数增加时,固定上下文模型的性能受限于取回器的质量,而MemGPT可以通过调用分页机制取回更多文档,其问答准确率也获得提升。
在新提出的多步嵌套关键词提取任务中,MemGPT通过多次调用外部上下文,成功完成了需要跨文档进行多跳查询才能得出解的任务,而GPT-3.5和GPT-4的准确率在嵌套层数增加时急剧下降到0。
主上下文
MemGPT中的主上下文相当于操作系统中的“主内存”,是大语言模型可以直接访问的固定长度上下文窗口。研究人员将主上下文分为三个部分:
系统指令:这部分保存了MemGPT的基本控制逻辑,例如,函数调用模式等,长度固定且只读。
对话上下文:这是一个先入先出的队列,保存了最近的用户交互历史,只读且会在长度超限时裁剪前段对话。
工作上下文:这是一个读写临时存储,大语言模型可以通过功能调用自主向其中写入信息。
需要注意的是,这三个部分合起来,不能超过底层大语言模型的最大上下文长度。
外部上下文
外部上下文保存了主上下文之外的额外信息,相当于操作系统中的“磁盘存储”。外部上下文需要明确的函数调用才能将信息导入主上下文供模型访问,包括以下两种类型:
回溯存储:保存完整的历史事件信息,相当于对话上下文的无压缩版本。
归档存储:通用的读写数据库,可以作为主上下文的溢出空间保存额外信息。在对话应用中,归档存储可以保存有关用户或系统角色的事实、喜好等额外信息。
回溯存储允许检索特定时间段的历史交互。在文档分析中,归档存储可以支持更大的文档集搜索。
自主编辑与检索
MemGPT通过大语言模型产生的函数调用在内存层级之间主动移动数据,实现自主的编辑与检索。例如,可以自主决定何时在上下文之间移动信息,以适应当前任务目标,无需人工参与。
创新点在于系统指令中详细描述了内存体系结构和功能调用方法,指导大语言模型学习使用这些工具管理内存。
大语言模型可以根据反馈调整调用策略。同时,当主上下文空间不足时,系统会提醒大语言模型及时保存重要信息,引导其管理内存。
链式调用
在MemGPT中,各种外部事件会触发大语言模型进行推理,这包括用户消息、系统内存警告、用户交互事件等。
功能调用可以请求获取控制权,从而实现链式调用。例如,检索结果分页浏览时,连续调用可以将不同页面的数据收集到主上下文中。
而Yield调用则会暂停大语言模型,直到下一个外部事件触发才再启动推理。这种基于事件的控制流协调了内存管理、模型推理和用户交互之间的顺畅沟通。
解析器与优化
MemGPT使用解析器验证大语言模型生成的函数调用,检查参数等是否正确。调用后会将结果反馈给模型,这样可以学习调整策略,减少错误。
此外,MemGPT的系统指令可以进行实时更新,以便在不同任务上给模型加入定制化的内存管理指导,实现持续优化。
本文素材来源加州伯克利分校MemGPT论文,如有侵权请联系删除
相关文章:

无限上下文,多级内存管理!突破ChatGPT等大语言模型上下文限制
目前,ChatGPT、Llama 2、文心一言等主流大语言模型,因技术架构的问题上下文输入一直受到限制,即便是Claude 最多只支持10万token输入,这对于解读上百页报告、书籍、论文来说非常不方便。 为了解决这一难题,加州伯克利…...
学习剑指jvm
一直弱,jvm 1、主要解决运行状态的线上系统突然卡死,造成系统无法访问,甚至直接内存溢出异常(Out of Memory,OOM) 2、希望解决线上JVM垃圾回收的相关问题,但无从下手。 3、新项目上线,对设置…...

java网络通信
浏览器中输入:“www.woaijava.com”之后都发生了什么? 请详细阐述 由域名→IP地址 寻找IP地址的过程依次经过了浏览器缓存、系统缓存、hosts文件、路由器缓存、 递归搜索根域名服务器。 建立TCP/IP连接(三次握手具体过程) 由浏览…...
Three.js之加载外部三维模型
参考资料 建模软件绘制3D场景…加载.gltf文件(模型加载全流程) 知识点 注:基于Three.jsv0.155.0 三维建模软件gltf格式加载.gltf文件 三维建模软件 D美术常用的三维建模软件,比如Blender、3dmax、C4D、maya等等 Blender(轻量开源)3dmaxC4Dmaya 特…...
【机器学习】正规方程与梯度下降API及案例预测
正规方程与梯度下降API及案例预测 文章目录 正规方程与梯度下降API及案例预测1. 正规方程与梯度下降正规方程(Normal Equation)梯度下降(Gradient Descent) 2. API3. 波士顿房价预测 1. 正规方程与梯度下降 回归模型是机器学习中…...

【SOC基础】单片机学习案例汇总 Part2:蜂鸣器、数码管显示
📢:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨ 📢:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 📢:文章若有幸对你有帮助,可点赞 👍…...

顶层模块【FPGA】
1顶层模块: 不能像C语言的h文件那样,把io的定义放在其他文件。 在Verilog中,顶层模块是整个设计的最高层次,它包含了所有其他模块和子模块。 顶层模块定义了整个设计的输入和输出端口,以及各个子模块之间的连接方式。…...
IT行业就业分析
1. IT技术发展背景及历程介绍 2. IT行业的就业方向有哪些? IT技术发展背景及历程介绍: IT技术的发展背景和历程可以追溯到上世纪40年代,以下是IT技术的主要发展阶段: 1.计算机的发展:二战期间,计算机作…...
读取用户剪贴板内容
读取用户剪贴板内容 在Web开发中,要读取用户剪贴板的内容,可以使用Clipboard API。这个API提供了一组方法和事件,用于访问和操作用户的剪贴板数据。 HTML <body><button onclick"readClipboard()">读取剪切板内容&l…...

“深入理解Nginx的负载均衡与动静分离“
目录 引言一、Nginx简介1. Nginx的基本概念2. Nginx的特点3. Nginx的安装配置 二、Nginx搭载负载均衡三、前端项目打包四、Nginx部署前后端分离项目,同时实现负载均衡和动静分离总结 引言 在现代互联网应用中,高性能和可扩展性是至关重要的。Nginx作为一…...

JVM 内存和 GC 算法
文章目录 内存布局直接内存执行引擎解释器JIT 即时编译器JIT 分类AOT 静态提前编译器(Ahead Of Time Compiler) GC什么是垃圾为什么要GC垃圾回收行为Java GC 主要关注的区域对象的 finalization 机制GC 相关算法引用计数算法(Reference Count…...

memtest86 prosite v10.6
passmark官方的memtest86 v10开始支持颗粒级别的坏内存芯片定位了,对于特定的若干种CPU和芯片组的组合,支持这项功能。 当然支持颗粒定位的site版本售价4800美金,是比较贵的。所以网络上出现了破解版的,人才真是。但是鼓励大家支…...

Springboot JSP项目如何以war、jar方式运行
文章目录 一,序二,样例代码1,代码结构2,完整代码备份 三,准备工作1. pom.xml 引入组件2. application.yml 指定jsp配置 四,war方式运行1. 修改pom.xml文件2. mvn执行打包 五,jar方式运行1. 修改…...

系统架构设计师(第二版)学习笔记----层次式架构设计理论与实践
【原文链接】系统架构设计师(第二版)学习笔记----层次式架构设计理论与实践 文章目录 一、层次式体系结构概述1.1 软件体系结构的作用1.2 常用的层次式架构图1.3 层次式体系可能存在的问题点 二、表现层框架设计2.1 MVC模式2.1.1 MVC三层模式2.1.2 MVC设…...

Python之字符串详解
目录 一、字符串1、转义字符与原始字符串2、使用%运算符进行格式化 一、字符串 在Python中,字符串属于不可变、有序序列,使用单引号、双引号、三单引号或三双引号作为定界符,并且不同的定界符之间可以互相嵌套。 ‘abc’、‘123’、‘中国’…...

《视觉SLAM十四讲》-- 概述与预备知识
文章目录 01 概述与预备知识1.1 SLAM 是什么1.1.1 基本概念1.1.2 视觉 SLAM 框架1.1.3 SLAM 问题的数学表述 1.2 实践:编程基基础1.3 课后习题 01 概述与预备知识 1.1 SLAM 是什么 1.1.1 基本概念 (1)SLAM 是 Simultaneous Localization a…...

Java8 Stream API全面解析——高效流式编程的秘诀
文章目录 什么是 Stream Api?快速入门流的操作创建流中间操作filter 过滤map 数据转换flatMap 合并流distinct 去重sorted 排序limit 限流skip 跳过peek 操作 终结操作forEach 遍历forEachOrdered 有序遍历count 统计数量min 最小值max 最大值reduce 聚合collect 收集anyMatch…...

分享一下微信小程序里怎么开店
如何在微信小程序中成功开店:从选品到运营的全方位指南 一、引言 随着微信小程序的日益普及,越来越多的人开始尝试在微信小程序中开设自己的店铺。微信小程序具有便捷、易用、即用即走等特点,使得开店门槛大大降低。本文将详细介绍如何在微…...

uniapp小程序刮刮乐抽奖
使用canvas画布画出刮刮乐要被刮的图片,使用移动清除画布。 当前代码封装为刮刮乐的组件; vue代码: <template><view class"page" v-if"merchantInfo.cdn_static"><image class"bg" :src&q…...

Qt 窗口无法移出屏幕
1 使用场景 设计一个缩进/展开widget的效果,抽屉效果。 看到实现的方法有定时器里move窗口,或是使用QPropertyAnimation。 setWindowFlags(Qt::Dialog | Qt::FramelessWindowHint |Qt::X11BypassWindowManagerHint); 记得在移…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...

【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...

Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...