第九周实验记录
1、安装Nerfstudio
环境配置
首先需要创建环境python=3.8,接着需要安装cuda11.7或11.3 这里安装cuda11.7
pip uninstall torch torchvision functorchpip install torch==1.13.1 torchvision functorch --extra-index-url https://download.pytorch.org/whl/cu117
安装tinycudann
直接使用 pip install 命令很可能出错
所以先git 下文件在安装
git clone --recursive https://github.com/nvlabs/tiny-cuda-nncd tiny-cuda-nncmake . -B buildcmake --build build --config RelWithDebInfo -j
在执行最后一步的时候可能会出现缺少文件的错误,需要升级cmake版本 参考链接
接着链接pytorch
cd tiny-cuda-nn/bindings/torchpython setup.py install #时间较长
测试 输入python
python
import tinycudann
如图 ,安装成功

安装nerfstudio
这里可以直接安装
pip install nerfstudio
也可以git安装
git clone https://github.com/nerfstudio-project/nerfstudio.gitcd nerfstudiopip install --upgrade pip setuptoolspip install -e .
运行实例
首先需要下载数据集,因为网络原因可能会无法下载,我是直接复制下载链接在浏览器下载。
ns-download-data nerfstudio --capture-name=poster
将数据集解压后,可以直接进行训练
ns-train nerfacto --data data/nerfstudio/poster

在HTTP框中 给出了viewer的地方,在pc端上使用ssh链接服务器 使用cmd输入
ssh -L 7007:localhost:7007 root@connect.beijinga.seetacloud.com -p 22048
复制链接打开浏览器,可以查看渲染情况

右侧可以渲染图像,得到视频,以及导出点云,在导出点云文件时命令可以运行,得到点云文件

2、MARS实验
按照github的命令配置环境,这里nerfstudio又安装了一些依赖
下载kitti数据集,一开始没有深度图,所以根据给的代码生成了深度图
开始训练(10月份版本的命令)
ns-train nsg-kitti-car-depth-recon --data /root/autodl-tmp/mars/data/kitti-MOT/training/image_02/0006
如果想读取已经训练的权重 :–load_dir /root/autodl-tmp/mars/outputs/0006/nsg-kitti-car-depth-recon/2023-11-04_090030/nerfstudio_models
一开始训练出现killed的情况

可能是内存不足,服务器换了160g内存进行重新训练,可以运行
可视化模型为wandb
查看训练曲线以及渲染图像情况



3090显卡,0006序列训练10万次大概9-10个小时
可视化同样可以使用nerfstudio提供的界面 --vis viewer(但是界面很奇怪)可能存在问题

并且根据提供的命令,渲染视频,也出现了错误,可能是nerfstudio安装出现问题,后续继续解决

下周计划
学习nerfstudio 查看论文、文档
解决本周出现的问题
详细阅读mars论文
相关文章:
第九周实验记录
1、安装Nerfstudio 环境配置 首先需要创建环境python3.8,接着需要安装cuda11.7或11.3 这里安装cuda11.7 pip uninstall torch torchvision functorchpip install torch1.13.1 torchvision functorch --extra-index-url https://download.pytorch.org/whl/cu117安…...
STM32WB55开发(6)----FUS更新
STM32WB55开发.6--FUS更新 概述视频教学硬件准备存储器映射FLASH安全区设置SRAM安全区设置通过USB进行下载注意事项 概述 在 STM32WB 微控制器中,FUS(Firmware Upgrade Services)是用于固件升级的一种服务。这项服务可以让你更新设备上的无…...
centos关闭Java进程的脚本
centos关闭Java进程的脚本,有时候服务就是个jar包,关闭程序又要找到进程ID,在kill掉,麻烦,这里就写了个脚本 小白教程,一看就会,一做就成。 1.脚本如下 #!/bin/bash ps -ef | grep java | gre…...
深度学习网络模型 MobileNet系列MobileNet V1、MobileNet V2、MobileNet V3网络详解以及pytorch代码复现
深度学习网络模型 MobileNet系列MobileNet V1、MobileNet V2、MobileNet V3网络详解以及pytorch代码复现 1、DW卷积与普通卷积计算量对比DW与PW计算量普通卷积计算量计算量对比 2、MobileNet V1MobileNet V1网络结构MobileNet V1网络结构代码 3、MobileNet V2倒残差结构模块倒残…...
Spring 中 BeanFactory 和 FactoryBean 有何区别?
这也是 Spring 面试时一道经典的面试问题,今天我们来聊一聊这个话题。 其实从名字上就能看出来个一二,BeanFactory 是 Factory 而 FactoryBean 是一个 Bean,我们先来看下总结: BeanFactory 是 Spring 框架的核心接口之一…...
黑马程序员项目-黑马点评
黑马点评1 短信登录 基于Session实现登录流程 发送验证码: 用户在提交手机号后,会校验手机号是否合法,如果不合法,则要求用户重新输入手机号 如果手机号合法,后台此时生成对应的验证码,同时将验证码进行…...
ubuntu 20.04 + Anaconda + cuda-11.8 + opencv-4.8.0(cuda)
环境:一键编译opencv-4.8.0(cuda),前提是已经安装好了cuda和cudnn Anaconda安装 参考: https://blog.csdn.net/weixin_46947765/article/details/130980957 opencv4.8.0编译安装 一键编译shell脚本 VERSION4.8.0test -e ${VERSION}.zip || wget http…...
Linux 目录
目录 1. Linux 目录1.1. 目录 /usr/bin 和 /usr/local/bin 区别 1. Linux 目录 1.1. 目录 /usr/bin 和 /usr/local/bin 区别 /usr/bin 下面的都是系统预装的可执行程序, 系统升级有可能会被覆盖。/usr/local/bin 目录是给用户放置自己的可执行程序。...
Linux shell编程学习笔记21:用select in循环语句打造菜单
一、select in循环语句的功能 Linux shell脚本编程提供了select in语句,这是 Shell 独有的一种循环语句,非常适合终端(Terminal)这样的交互场景,它可以根据用户的设置显示出带编号的菜单,用户通过输入不同…...
线性回归与线性拟合的原理、推导与算法实现
关于回归和拟合,从它们的求解过程以及结果来看,两者似乎没有太大差别,事实也的确如此。从本质上说,回归属于数理统计问题,研究解释变量与响应变量之间的关系以及相关性等问题。而拟合是把平面的一系列点,用…...
【C++】set和multiset
文章目录 关联式容器键值对一、set介绍二、set的使用multiset 关联式容器 STL中的部分容器,比如:vector、list、deque、forward_list(C11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元…...
二十、泛型(1)
本章概要 基本概念 与 C 的比较 简单泛型 一个元组类库一个堆栈类RandomList 基本概念 普通的类和方法只能使用特定的类型:基本数据类型或类类型。如果编写的代码需要应用于多种类型,这种严苛的限制对代码的束缚就会很大。 多态是一种面向对象思想的泛…...
【Unity数据交互】游戏中常用到的Json序列化
ˊˊ 👨💻个人主页:元宇宙-秩沅 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 秩沅 原创 👨💻 收录于专栏࿱…...
TCP的滑动窗口和拥塞控制
目录 滑动窗口 1.发送窗口和接收窗口 2.滑动窗口的分类 停止等待协议:发送窗口大小 1, 接收窗口大小 1 后退N帧协议(GBN):发送窗口大小 > 1,接收窗口大小 1 选择重传协议(SR…...
零信任网络:一种全新的网络安全架构
随着网络技术的不断发展,网络安全问题日益凸显。传统的网络安全策略往往基于信任和验证,但这种信任策略存在一定的局限性。为了解决这一问题,零信任网络作为一种全新的网络安全架构,逐渐受到人们的关注。本文将对零信任网络的概念…...
基于单片机的智能拐杖软件设计
欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 技术交流认准下方 CSDN 官方提供的联系方式 文章目录 概要 一、整体设计方案2.1本设计设计原理2.1.1单片机基本介绍 二、本设计方案选择三、软件设计AD原理图:原理图…...
小程序如何设置自动预约快递
小程序通过设置自动预约功能,可以实现自动将订单信息发送给快递公司,快递公司可以自动上门取件。下面具体介绍如何设置。 在小程序管理员后台->配送设置处,选择首选配送公司。为了能够支持自动预约快递,请选择正常的快递公司&…...
STM32-HAL库08-TIM的输出比较模式(输出PWM的另一种方式)
STM32-HAL库08-TIM的输出比较模式(输出PWM的另一种方式) 一、所用材料: STM32F103C6T6最小系统板 STM32CUBEMX(HAL库软件) MDK5 示波器或者逻辑分析仪 二、所学内容: 通过定时器TIM的输出比较模式得到预…...
【数据结构】深入浅出讲解计数排序【图文详解,搞懂计数排序这一篇就够了】
计数排序 前言一、计数排序算法核心思路映射 概念补充绝对映射相对映射 二、计数排序算法核心实现步骤三、码源详解四、效率分析(1)时间复杂度 — O(Max(N,range))(2)空间…...
Canvas制作喷泉效果示例
Canvas能制作出很多动画效果,下面是一个制作喷泉效果的示例 效果图 源代码 <!DOCTYPE html> <html> <head> <meta charset"utf-8"> <meta name"viewport" content"widthdevice-width, initial-scale1 ,user-…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
LangChain【6】之输出解析器:结构化LLM响应的关键工具
文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器?1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...
Python第七周作业
Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt,并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径,并创建logs目录(若不存在) 3.递归遍历目录data,输出所有.csv文件的路径…...
算法刷题-回溯
今天给大家分享的还是一道关于dfs回溯的问题,对于这类问题大家还是要多刷和总结,总体难度还是偏大。 对于回溯问题有几个关键点: 1.首先对于这类回溯可以节点可以随机选择的问题,要做mian函数中循环调用dfs(i&#x…...
Spring事务传播机制有哪些?
导语: Spring事务传播机制是后端面试中的必考知识点,特别容易出现在“项目细节挖掘”阶段。面试官通过它来判断你是否真正理解事务控制的本质与异常传播机制。本文将从实战与源码角度出发,全面剖析Spring事务传播机制,帮助你答得有…...
mcts蒙特卡洛模拟树思想
您这个观察非常敏锐,而且在很大程度上是正确的!您已经洞察到了MCTS算法在不同阶段的两种不同行为模式。我们来把这个关系理得更清楚一些,您的理解其实离真相只有一步之遥。 您说的“select是在二次选择的时候起作用”,这个观察非…...
【向量库】Weaviate 搜索与索引技术:从基础概念到性能优化
文章目录 零、概述一、搜索技术分类1. 向量搜索:捕捉语义的智能检索2. 关键字搜索:精确匹配的传统方案3. 混合搜索:语义与精确的双重保障 二、向量检索技术分类1. HNSW索引:大规模数据的高效引擎2. Flat索引:小规模数据…...
