Pytorch 缓解过拟合和网络退化
一 添加BN模块
BN模块应该添加 激活层前面
在模型实例化后,我们需要对BN层进行初始化。PyTorch中的BN层是通过nn.BatchNorm1d或nn.BatchNorm2d类来实现的。
bn = nn.BatchNorm1d(20) #
对于1D输入数据,使用nn.BatchNorm1d;对于2D输入数据,使用nn.BatchNorm2d
在模型的前向传播过程中,我们需要将BN层应用到适当的位置。以全连接层为例,我们需要在全连接层的输出之后调用BN层。
class MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.fc1 = nn.Linear(10, 20)self.bn = nn.BatchNorm1d(20)self.fc2 = nn.Linear(20, 30)self.fc3 = nn.Linear(30, 2)def forward(self, x):x = self.fc1(x)x = self.bn(x)x = self.fc2(x)x = self.fc3(x)return x
二 添加残差连接
最主要的是需要注意输入参数的维度是否一致
import torch
import torch.nn as nnclass ResidualBlock(nn.Module):def __init__(self, input_size, hidden_size):super(ResidualBlock, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)self.fc2 = nn.Linear(hidden_size, input_size)self.relu = nn.ReLU()def forward(self, x):residual = xout = self.fc1(x)out = self.relu(out)out = self.fc2(out)out += residualout = self.relu(out)return out
-----------------------------------
©著作权归作者所有:来自51CTO博客作者mob649e8166c3a5的原创作品,请联系作者获取转载授权,否则将追究法律责任
pytorch 全链接层设置残差模块
https://blog.51cto.com/u_16175510/6892589
三 一维卷积(tf和torch)
a. tf.keras.layers.Conv1D
该函数的必要参数有两个,filters(即 out_channels)和 kernel_size。对于 X = (1, 8, 128),如下代码可以得到 Y = (1, 6, 64):
import tensorflow as tf
X = tf.random.normal((1, 8, 128))
X.shape
# TensorShape([1, 8, 128])
conv = tf.keras.layers.Conv1D(64, 3, padding='valid')
Y = conv(X)
Y.shape
# TensorShape([1, 6, 64])
keras 为了让整个 api 更加用户友好,隐藏了两个关键参数。第一个是 data_format,在默认值 “channels_last”下,X 的维度顺序为 [batch_size, seq_length, input_channels],更符合NLP任务的直观理解。如果修改为“channels_first”,X 需要满足 [batch_size, input_channels, seq_length]。第二个是 input_channels,在函数内部自动获得:
input_channel = self._get_input_channel(input_shape)
如果 X 和 data_format 不匹配,就得不到正确的 in_channels。这里就是和 Pytorch 显著差异的地方。
b. torch.nn.Conv1d
该函数的必要参数有三个,in_channels, out_channels 和 kernel_size。被 keras 隐藏的 in_channels 被直接暴露,并且也不支持 data_format 的设置,X 的维度顺序必须是 [batch_size, input_channels, seq_length]。因此,对于通常的使用习惯,必须要先对输入做一次维度转换,再对输出做一次。对于 X = (1, 8, 128),如下代码可以得到 Y = (1, 6, 64):
import torch
X = torch.randn(1, 8, 128)
X.shape
# torch.Size([1, 8, 128])
Xt = X.transpose(1,2)
Xt.shape
# torch.Size([1, 128, 8])
conv = torch.nn.Conv1d(128, 64, 3)
Yt = conv(Xt)
Yt.shape
# torch.Size([1, 64, 6])
Y = Yt.transpose(Yt)
Y.shape
# torch.Size([1, 6, 64])
1、Pytorch搭建残差网络
2、扒源码:TensorFlow与Pytorch在一维卷积上的差异
相关文章:
Pytorch 缓解过拟合和网络退化
一 添加BN模块 BN模块应该添加 激活层前面 在模型实例化后,我们需要对BN层进行初始化。PyTorch中的BN层是通过nn.BatchNorm1d或nn.BatchNorm2d类来实现的。 bn nn.BatchNorm1d(20) # 对于1D输入数据,使用nn.BatchNorm1d;对于2D输入数据&am…...
【算法】昂贵的聘礼(dijkstra算法)
题目 年轻的探险家来到了一个印第安部落里。 在那里他和酋长的女儿相爱了,于是便向酋长去求亲。 酋长要他用 10000 个金币作为聘礼才答应把女儿嫁给他。 探险家拿不出这么多金币,便请求酋长降低要求。 酋长说:”嗯,如果你能够替我…...
hackergame2023菜菜WP
文章目录 总结Hackergame2023更深更暗组委会模拟器猫咪小测标题HTTP集邮册Docker for everyone惜字如金 2.0Git? Git!高频率星球低带宽星球小型大语言模型星球旅行日记3.0JSON ⊂ YAML? 总结 最近看到科大在举办CTF比赛,刚好我学校也有可以参加,就玩了…...
ubuntu20.04.6使用FTP-及相关安全配置
前言: 作为一名运维,对文件系统,网络,文件共享,内存,CPU,以及一些应用服务及监控相关的知识需要 了解。今天是自己第一次搭建FTP(以前用过smb,windows共享,FT…...
C++中不允许复制的类
C中不允许复制的类 假设您需要模拟国家的政体。一个国家只能有一位总统,而 President 类面临如下风险: President ourPresident; DoSomething(ourPresident); // duplicate created in passing by value President clone; clone ourPresident; // dup…...
使用Python 脚自动化操作服务器配置
“ 有几十台特殊的服务器,没有合适的批量工具只能手动,要一个一个进行点击设置很耗费时间呀\~”,使用 Python 的简单脚本,即可模拟鼠标键盘进行批量作业 01 — 自动化示例 以某服务器中的添加用户权限为例,演示过程皆未触碰鼠标…...
DL Homework 6
目录 一、概念 (1)卷积 (2)卷积核 (3)特征图 (4)特征选择 (5)步长 (6)填充 (7)感受野 二、探究不同卷…...
软考高项论文-绩效域
干系人绩效域 预期目标指标及检查方法建立高效的工作关系干系人参与的连续性干系人认同项目目标变更的频率支持项目的干系人提高了满意度,并从中收益;反对项目的干系人没有对项目产生负面影响干系人行为干系人满意度干系人相关问题和风险团队绩效域 预期目标指标及检查方法共…...
设计模式之装饰模式--优雅的增强
目录 概述什么是装饰模式为什么使用装饰模式关键角色基本代码应用场景 版本迭代版本一版本二版本三—装饰模式 装饰模式中的巧妙之处1、被装饰对象和装饰对象共享相同的接口或父类2、当调用装饰器类的装饰方法时,会先调用被装饰对象的同名方法3、子类方法与父类方法…...
前端vue,后端springboot。如何防止未登录的用户直接浏览器输入地址访问
前端,使用Vue框架来实现前端路由拦截: 设置需要登录校验的页面: 登录成功后,去设置LocalStorage里面的IsLogin为true:...
linux安装Chrome跑web自动化
添加 Chrome 源: 打开终端并执行以下命令,将 Google Chrome 的 APT 源添加到系统: bashCopy code wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb 安装 Chrome: 执行以下命令来安装 Chrome&…...
linux环境下编译,安卓平台使用的luajit库
一、下载luajit源码 1、linux下直接下载: a、使用curl下载:https://luajit.org/download/LuaJIT-2.1.0-beta3.tar.gz b、git下载地址;https://github.com/LuaJIT/LuaJIT.git 2、Windows下载好zip文件,下载地址:https…...
indexedDB笔记
indexedDB 该部分内容主要源于https://juejin.cn/post/7026900352968425486 常用场景:大量数据需要缓存在本地重要概念 仓库objectStore:类似于数据库中的表,数据存储媒介索引index:索引作为数据的标志量,可根据索引获…...
系统提示缺少或找不到emp.dll文件的详细解决方案
我今天打开一款《游戏》。然而,在游戏中遇到了一个非常棘手的问题:游戏报错找不到emp.dll,无法继续执行代码。这让我们非常苦恼,因为这个问题严重影响了我们的游戏体验。 在经过一番努力之后,我终于找到了4个解决方法,…...
Python实现自动化网页操作
1 准备 推荐使用Chrome浏览器 1.1 安装selenium程序包 激活虚拟环境,打开新的Terminal,输入以下代码: python -m pip install selenium 如下图所示,表示安装成功,版本为4.7.2 安装成功 关闭虚拟环境,打…...
03 矩阵与线性变换
矩阵与线性变换 线性变换如何用数值描述线性变换特殊的线性变换反过来看总结 这是关于3Blue1Brown "线性代数的本质"的学习笔记。 线性变换 如果一个变换具有以下两个性质,我们就称它是线性的: 一是直线在变换后仍然保持为直线二是原点必须…...
MySQL InnoDB数据存储结构
1. 数据库的存储结构:页 索引结构给我们提供了高效的索引方式,不过索引信息以及数据记录都是保存在文件上的,确切说是存储在页结构中。另一方面,索引是在存储引擎中实现的,MySQL服务器上的存储引擎负责对表中数据的读…...
【数据结构】数组和字符串(十五):字符串匹配2:KMP算法(Knuth-Morris-Pratt)
文章目录 4.3 字符串4.3.1 字符串的定义与存储4.3.2 字符串的基本操作4.3.3 模式匹配算法0. 朴素模式匹配算法1. ADL语言2. KMP算法分析3. 手动求失败函数定义例1例2例3 4. 自动求失败函数(C语言)5. KMP算法(C语言)6. 失败函数答案…...
STM32 PWM可控制电压原理
PWM可控制电压原理 主要通过PWM 输入模式根据控制单位时间内输出的平均电压,以调节电压大小。而PWM输出模式通过调节占空比,控制平均电压大小; 设置TIM为PWM输出模式 第一步:时钟使能: GPIO,TIM; 第二步&a…...
angular、 react、vue框架对比
借鉴:Web前端开发:三大主流框架 (baidu.com) AngularReactVue公司ChromeFaceBook尤雨溪写法有指令、模板的概念比较灵活,没有要求使用特定的架构和模式有指令和模板的概念性能低有虚拟Dom,性能高有虚拟Dome,性能高学习门槛 高&am…...
华为云AI开发平台ModelArts
华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
