当前位置: 首页 > news >正文

全局变量和局部变量在for循环的使用

imageloc字典作为全局变量,然后添加到全局的列表中,每次for循环都会将最新的元素改变之前for循环添加的元素。而imageloc字典作为局部变量,则不会影响。

import numpy as np
originaljson = [{"joints_vis": [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],"joints": [[804.0,711.0],[816.0,510.0],[908.0,438.0],[1040.0,454.0],[906.0,528.0],[883.0,707.0],[974.0,446.0],[985.0,253.0],[982.7591,235.9694],[962.2409,80.0306],[869.0,214.0],[798.0,340.0],[902.0,253.0],[1067.0,253.0],[1167.0,353.0],[1142.0,478.0]],"image": "005808361.jpg","scale": 4.718488,"center": [966.0,340.0]},{"joints_vis": [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],"joints": [[317.0,412.0],[318.0,299.0],[290.0,274.0],[353.0,275.0],[403.0,299.0],[394.0,409.0],[322.0,275.0],[327.0,172.0],[329.9945,162.1051],[347.0055,105.8949],[296.0,135.0],[281.0,208.0],[296.0,167.0],[358.0,177.0],[387.0,236.0],[392.0,167.0]],"image": "052475642.jpg","scale": 1.761835,"center": [316.0,220.0]},{"joints_vis": [0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1],"joints": [[-1.0,-1.0],[1033.0,649.0],[1072.0,474.0],[973.0,496.0],[961.0,650.0],[-1.0,-1.0],[1023.0,485.0],[1031.0,295.0],[1026.998,281.6248],[997.002,181.3752],[988.0,294.0],[1018.0,317.0],[1070.0,290.0],[991.0,300.0],[912.0,345.0],[842.0,330.0]],"image": "052475643.jpg","scale": 3.139233,"center": [1030.0,396.0]},{"joints_vis": [0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1],"joints": [[-1.0,-1.0],[804.0,659.0],[786.0,498.0],[868.0,509.0],[860.0,693.0],[-1.0,-1.0],[827.0,504.0],[840.0,314.0],[838.9079,308.9326],[816.0921,203.0674],[698.0,264.0],[740.0,297.0],[790.0,300.0],[889.0,328.0],[915.0,452.0],[906.0,553.0]],"image": "004645041.jpg","scale": 3.248877,"center": [809.0,403.0]}
]newjson = []# imageloc = {}
for i in range(len(originaljson)):imageloc = {}box = []imagename = originaljson[i]["image"].split('.')[0]box.append(1)box.append(2)box.append(3)box.append(4)imageloc[imagename] = boxnewjson.append(imageloc)

相关文章:

全局变量和局部变量在for循环的使用

imageloc字典作为全局变量,然后添加到全局的列表中,每次for循环都会将最新的元素改变之前for循环添加的元素。而imageloc字典作为局部变量,则不会影响。 import numpy as np originaljson [{"joints_vis": [1,1,1,1,1,1,1,1,1,1,…...

pytorch collate_fn测试用例

collate_fn 函数用于处理数据加载器(DataLoader)中的一批数据。在PyTorch中使用 DataLoader 时,通过设置collate_fn,我们可以决定如何将多个样本数据整合到一起成为一个 batch。在某些情况下,该函数需要由用户自定义以满足特定需求。 import …...

【qemu逃逸】HITB2017-babyqemu 2019数字经济-qemu

前言 由于本地环境问题,babyqemu 环境都没有起起,这里仅仅做记录,exp 可能不正确。 HITB2017-babyqemu 设备逆向 设备定位啥的就不说了,先看下实例结构体: 其中 dma_state 结构体如下: 这里看字段猜测…...

Docker Compose学习笔记

Docker Compose用来做什么? Docker Compose 是Docker官方的开源项目。 Compose is a tool for defining and running multi-container Docker applications. With Compose, you use a YAML file to configure your application’s services. Then, with a single …...

基于树 二叉树的回溯搜索算法(DPLL)

1)全称:Davis-Putnam-Logemann-Loveland 2)思想:基于树/二叉树的回溯搜索算法,主要基于两种策略。 单子句规则:如果一个CNF范式中存在单子句L(含有一个文字的子句),取L为…...

【嵌入式】适用于ESP32/ESP8266远程自动烧录工具

文章目录 介绍开始使用下载项目开启服务端开始远程烧录 后记 介绍 esp_remote_flash_tool 是一款基于 esptool.py 的远程自动烧录工具,支持 ESP32 和 ESP8266。 使用场景 基于 ESP-IDF 、ESP8266 NONO SDK、ESP8266 RTOS SDK 进行开发的项目项目代码存储在 Linux…...

服务器遭受攻击如何处理(记录排查)

本文的重点是介绍如何鉴别安全事件以及保护现场的方法,以确保服务器负责人能够在第一时间对安全攻击做出反应,并在最短时间内抵御攻击或减少攻击所带来的影响。 在服务器遭遇疑似安全事件时,通常可以从账号、进程、网络和日志四个主要方面进…...

分享81个工作总结PPT,总有一款适合您

分享81个工作总结PPT,总有一款适合您 PPT下载链接:https://pan.baidu.com/s/13hyrlZo2GhRoQjI-6z31-w?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易。知识付…...

什么是DITA?从百度的回答说起

▲ 搜索“大龙谈智能内容”关注GongZongHao▲ 什么是DITA? 把这个问题输入百度,获得以下回答: DITA 是“Darwin Information Typing Architecture”(达尔文信息类型化体系结构)的缩写,它是IBM 公司为OASIS 所支持…...

线扫相机DALSA软件开发套件有哪些

Win10和Win7系统完整SDK目录截图: Sapera Configuration 缓存与内存管理,以及通信端口配置工具,部分功能等效于Detection(查找相机)内的Settings。 Sapera Log Viewer 打开Log Viewer后会显示之前发生过的所有与Sapera LT软件有关的运行信息…...

Scala集合操作

1 集合简介 Scala 中拥有多种集合类型,主要分为可变的和不可变的集合两大类: 可变集合: 可以被修改。即可以更改,添加,删除集合中的元素; 不可变集合类:不能被修改。对集合执行更改,…...

SQL备忘--特殊状态“未知“以及“空值NULL“的判断

一、新逻辑状态:未知 对于大多数其他语言的逻辑判断,一般只有两种结果:真(TURE)或假(FALSE)但在SQL中,还会有第三种判断结果:未知(UNKNOWN),表示无法判断出真或者假。 未知状态会影响传统逻辑运算&#x…...

《Pytorch新手入门》第一节-认识Tensor

《Pytorch新手入门》第一节-认识Tensor 一、认识Tensor1.1 Tensor定义1.2 Tensor运算操作1.3 Tensor与numpy转换 参考《深度学习框架PyTorch:入门与实践_陈云(著)》 一、认识Tensor 1.1 Tensor定义 Tensor 是 PyTorch 中重要的数据结构,可认为是一个高…...

【JAVA学习笔记】55 - 集合-Map接口、HashMap类、HashTable类、Properties类、TreeMap类(难点)

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter14/src/com/yinhai/map_ Map接口 一、Map接口的特点(难点) 难点在于对Node和Entry和EntrySet的关系 注意:这里讲的是JDK8的Map接口特点 Map java 1) Map与Collect…...

Pytorch图像模型转ONNX后出现色偏问题

本篇记录一次从Pytorch图像处理模型转换成ONNX模型之后,在推理过程中出现了明显色偏问题的解决过程。 问题描述:原始pytorch模型推理正常,通过torch.onnx.export()函数转换成onnx之后,推理时出现了比较明显的颜色偏差。 原始模型…...

插值表达式 {{}}

前言 持续学习总结输出中,今天分享的是插值表达式 {{}} Vue插值表达式是一种Vue的模板语法,我们可以在模板中动态地用插值表达式渲染出Vue提供的数据绑定到视图中。插值表达式使用双大括号{{ }}将表达式包裹起来。 1.作用: 利用表达式进行…...

白雪公主

前言 #define 皇后 王后 在很久很久以前,有一个国王,由于王后难产致死,导致生下的孩子没母,由于缺爱,变的非常的刻薄 由于公主过于刻薄,以至于见到她的人都面色煞白感到空中飘雪 37C 的嘴怎能说出如此刻薄的话语。为了…...

宏观角度认识递归之合并两个有序链表

21. 合并两个有序链表 - 力扣(LeetCode) 依旧是利用宏观角度来看待问题,其中最主要的就是要找到重复的子问题; 题目中要求把两个有序链表进行合并,同时不能够创建新的节点,并返回链表的起始点:因…...

Leetcode-509 斐波那契数列

使用循环 class Solution {public int fib(int n) {if(n 0){return 0;}if(n 1){return 1;}int res 0;int pre1 1;int pre2 0;for(int i 2; i < n; i){res pre1 pre2;pre2 pre1;pre1 res;}return res;} }使用HashMap class Solution {private Map<Integer,Int…...

解密 docker 容器内 DNS 解析原理

背景 这几天在使用 docker 中&#xff0c;碰到了在容器中 DNS 解析的一些问题。故花些时间弄清了原理&#xff0c;写此文章分享。 1. docker run 命令启动的容器 以启动一个 busybox 容器为例&#xff1a; rootubuntu20:~# docker run -itd --name u1 busybox 63b59ca8aeac…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...